| 研究生: |
黃兆民 Huang, Zhao-Min |
|---|---|
| 論文名稱: |
噴覆成型高矽量Al-Si-Zn-Fe-Mn-Mg合金之機械性質與磨耗性質探討 Study of Mechanical and Wear Properties of High Si-Containing Al-Si-Zn-Fe-Mn-Mg Alloys Synthesizes by Spray Forming Process |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan A. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 噴覆成型 、高矽鋁合金 、引擎汽缸套 、合金設計 、磨耗試驗 |
| 外文關鍵詞: | Spray Forming, High Si-Containing Aluminum Alloy, Cylinder Liner, Alloy Design, Wear Test |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以熱力學模擬軟體Thermal-Calc搭配鑄造製程,發現Mn/Fe比值大於0.86可有效使得平板狀之β-Al5FeSi轉變為文字狀之α-Al15(Fe,Mn)3Si2,並接著利用快速凝固之噴覆成型製備Al-25Si-10Zn-3Fe-3Mn-1Mg與Al-25Si-10Zn-5Fe-5Mn-1Mg合金,搭配背向式擠型得到大小為2-5微米之圓鈍初晶Si顆粒以及約1微米大小圓鈍之α-Al15(Fe,Mn)3Si2與Mg2Si均勻散佈的顯微組織,且此合金系統在250℃具有良好的熱穩定性,其顯微組織在250℃持溫200小時後,經由影像分析並無發現強化相之粗化。
另外研究結果也發現,藉由添加Fe和Mn能有效提高材料之室溫硬度以及250℃高溫拉伸強度,並在高應力狀態下之高溫濕式磨耗過程中有效提升Al合金抗磨耗性質。
In this study, using Thermal-Calc simulations and casting found that Mn/Fe ratio greater than 0.86 could effectively make platelet β-Al5FeSi transform to Chinese-script α-Al15(Fe, Mn)3Si2. Followed by the rapid solidification of spray forming and indirect extrusion, Al-25Si-10Zn-3Fe-3Mn-1Mg and Al-25Si-10Zn-5Fe-5Mn-1Mg alloy had microstructure with 2-5μm Si particles, and 1μm α-Al15 (Fe, Mn)3Si2, Mg2Si particles well distribute in aluminum matrix, and found this alloy system has good thermal stability at 250℃. After heat treatment at 250℃ for 200hr, the microstructure did not coarse via image analysis.
Further study also found that, by adding Fe and Mn can improve the hardness at room temperature and high-temperature tensile strength at 250℃, and promote the wear resistance at 170℃ with lubricant under high loading.
1. Davis, J.R., Alloying : understanding the basics. 2001: ASM International.
2. Farkoosh, A.R., X. Grant Chen, and M. Pekguleryuz, Dispersoid strengthening of a high temperature Al–Si–Cu–Mg alloy via Mo addition. Materials Science and Engineering: A, 2015. 620: p. 181-189.
3. Ringer, S.P., K.S. Prasad, and G.C. Quan, Internal co-precipitation in aged Al–1.7Cu–0.3Mg–0.1Ge (at.%) alloy. Acta Materialia, 2008. 56(9): p. 1933-1941.
4. Xiao, D.H., et al., Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy. Journal of Alloys and Compounds, 2003. 352(1-2): p. 84-88.
5. Wang, G., et al., Influence of Indium Trace Addition on the Precipitation Behavior in a 357 Cast Aluminum Alloy. Journal of Materials Engineering and Performance, 2007. 16(6): p. 752-756.
6. Knipling, K.E., D.C. Dunand, and D.N. Seidman, Criteria for developing castable, creep-resistant aluminum-based alloys - A review. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2006. 97(3): p. 246-265.
7. Knipling, K.E., Development of a Nanoscale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates (Ph.D. thesis). 2006, Northwestern University.
8. Farkoosh, A.R. and M. Pekguleryuz, The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Materials Science and Engineering: A, 2013. 582: p. 248-256.
9. Gomes, R.M., et al., Precipitation Strengthening and Mechanical Properties of Hypereutectic P/M Al-Si-Cu-Mg Alloys Containing Fe and Ni. Materials Science Forum, 1996. 217-222: p. 789-794.
10. Zhou, J., J. Duszczyk, and B.M. Korevaar, Microstructural features and final mechanical properties of the iron-modified Al-20Si-3Cu-1 Mg alloy product processed from atomized powder. Journal of Materials Science, 1991. 26(11): p. 3041-3050.
11. Zhou, J., J. Duszczyk, and B.M. Korevaar, As-spray-deposited structure of an Al-20Si-5Fe Osprey preform and its development during subsequent processing. Journal of Materials Science, 1991. 26(19): p. 5275-5291.
12. Kim, T.S., et al., Microstructures and mechanical properties of Al-20Si-xFe (x=3, 5, 7) alloys manufactured by rapid solidification processing. Materials Transactions, JIM, 1998. 39(12): p. 1214-1219.
13. Dinnis, C.M., J.A. Taylor, and A.K. Dahle, As-cast morphology of iron-intermetallics in Al–Si foundry alloys. Scripta Materialia, 2005. 53(8): p. 955-958.
14. Mocellin, A., R. Fougeres, and P.F. Gobin, A study of damage under tensile loading in a new Al-Si-Fe alloy processed by the Osprey route. Journal of Materials Science, 1993. 28(18): p. 4855-4861.
15. Couture, A., IRON IN ALUMINUM CASTING ALLOYS - A LITERATURE SURVEY. International cast metals journal, 1981. 6(4): p. 9-17.
16. Ashtari, P., H. Tezuka, and T. Sato, Influence of Sr and Mn Additions on Intermetallic Compound Morphologies in Al-Si-Cu-Fe Cast Alloys. MATERIALS TRANSACTIONS, 2003. 44(12): p. 2611-2616.
17. Ashtari, P., H. Tezuka, and T. Sato, Modification of Fe-containing intermetallic compounds by K addition to Fe-rich AA319 aluminum alloys. Scripta Materialia, 2005. 53(8): p. 937-942.
18. Gowri, S. and F.H. Samuel, Effect of alloying elements on the solidification characteristics and microstructure of Al- Si- Cu- Mg- Fe 380 alloy. Metallurgical and Materials Transactions A, 1994. 25(2): p. 437-448.
19. Gustafsson, G., T. Thorvaldsson, and G.L. Dunlop, The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys. Metallurgical Transactions A, 1986. 17(1): p. 45-52.
20. Kim, H.Y., S.W. Han, and H.M. Lee, The influence of Mn and Cr on the tensile properties of A356–0.20Fe alloy. Materials Letters, 2006. 60(15): p. 1880-1883.
21. Wang, F., et al., Effect of Fe and Mn additions on microstructure and mechanical properties of spray-deposited Al–20Si–3Cu–1 Mg alloy. Materials Characterization, 2009. 60(5): p. 384-388.
22. Yang, B., et al., The effect of Mn on the microstructure of spray-deposited Al–20Si–5Fe–3Cu–1Mg alloy. Scripta Materialia, 2001. 45(5): p. 509-515.
23. Courtney, T.H., Mechanical Behavior of Materials. Second ed. 2005: Waveland Press, Inc.
24. Su, Y.-H.F., Development of spray-formed Al-Si cylinder linear for auto engine. 2004, National Cheng Kung University: R.O.C.
25. Clyne T. W., W.P.J., An introduction to metal matrix composites. 1993.
26. Lloyd, D.J., ASPECTS OF FRACTURE IN PARTICULATE REINFORCED METAL MATRIX COMPOSITES. Acta Metallurgica Et Materialia, 1991. 39(1): p. 59-71.
27. Mocellin, A., Y. Brechet, and R. Fougeres, FRACTURE OF AN OSPREY(TM) ALSIFE ALLOY - A MICROSTRUCTURE BASED MODEL FOR FRACTURE OF MICROHETEROGENEOUS MATERIALS. Acta Metallurgica Et Materialia, 1995. 43(3): p. 1135-1140.
28. Martin, J.W., R. D. Doherty, and B. Cantor., Stability of Microstructure in Metallic Systems. 1997: Cambridge University Press.
29. Rabinowicz, E., Friction and Wear of Materials. 2nd ed. 1995: Wiley-Interscience.
30. Straffelini, G., Friction and Wear. Springer Tracts in Mechanical Engineering. 2015: Springer.
31. G.W. Stachowiak, A.W.B., Engineering Tribology. 3rd ed. 2005, Amsterdam: Elsevier.
32. M.M. Khosari, E.R.B., Applied Tribology. 2nd ed. 2008, New York: Wiley.
33. Hamrock, B.J., Fundamentals of Fluid Film Lubrication. 1994, New York: McGrew-Hill.
34. Chen, M., T. Perry, and A.T. Alpas, Ultra-mild wear in eutectic Al–Si alloys. Wear, 2007. 263(1–6): p. 552-561.
35. Chen, M., et al., Micromechanisms and mechanics of ultra-mild wear in Al-Si alloys. Acta Materialia, 2008. 56(19): p. 5605-5616.
36. Dey, S.K., T.A. Perry, and A.T. Alpas, Micromechanisms of low load wear in an Al-18.5% Si alloy. Wear, 2009. 267(1-4): p. 515-524.
37. Meng-Burany, X., et al., Subsurface sliding wear damage characterization in Al–Si alloys using focused ion beam and cross-sectional TEM techniques. Wear, 2011. 270(3–4): p. 152-162.
38. Cui, C., et al., Characterization of silicon phases in spray-formed and extruded hypereutectic Al–Si alloys by image analysis. Journal of Materials Science, 2009. 44(18): p. 4814-4826.
39. Hwang, J.Y., H.W. Doty, and M.J. Kaufman, The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys. Materials Science and Engineering: A, 2008. 488(1-2): p. 496-504.
40. Belmares-Perales, S., Effect of Cooling Rate and Fe/Mn Weight Ratio on Volume Fractions of α-AlFeSi and β-AlFeSi Phases in Al–7.3Si–3.5Cu Alloy. Metals and Materials International, 2008. 14(3): p. 307-314.
41. Huang, H.J., et al., Influence of Mn addition on microstructure and phase formation of spray-deposited Al–25Si–xFe–yMn alloy. Materials Science and Engineering: A, 2009. 502(1–2): p. 118-125.
42. Hou, L.G., C. Cui, and J.S. Zhang, Optimizing microstructures of hypereutectic Al–Si alloys with high Fe content via spray forming technique. Materials Science and Engineering: A, 2010. 527(23): p. 6400-6412.
43. P.S. Raghupathi, W.C.S., M. Baxi, Aluminum and aluminum alloys. Vol. 14. 1998: ASM International.
44. Koji Kato, K.A., Mordern Tribology Handbook. Mechanics and materials science series, ed. B. Bhushan. Vol. 1. 2001.
45. international, A., Standard Test Methods for Tension Testing of Metallic Materials. 2011: United State.
46. 陳俊銘, 噴覆成型高矽量Al-Si-Zn-Fe-Mg合金的塑性加工性與高溫機械性質探討, 2016