簡易檢索 / 詳目顯示

研究生: 羅德尼
Andhy Romdani
論文名稱: 雲林海岸沿岸輸沙機制及影響
Mechanisms and Effects of Littoral Sediment Transport to the Yunlin Coast
指導教授: 陳佳琳
Chen, Jia-Lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 77
外文關鍵詞: sediment transport, harbor siltation, density current, river plume, typhoon, navigation channel improvement
ResearchGate: https://www.researchgate.net/profile/Andhy-Romdani
相關次數: 點閱:55下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Zhuoshui River delivers 51.10 Mt/d of sediment, which is the maximum sediment yield, to the river mouth and surrounding areas. The Mailiao Port's navigation channel, located in the south of the Zhuoshui River, has a daily dredging volume of 18,797 m3/d. The erosion and deposition between the Zhuoshui River mouth and Mailiao Port are challenging to be investigated, particularly during a typhoon in the summer and low river discharge conditions in the winter. This present study aimed to understand the process of river plumes at the land-sea boundary system during Typhoon Kalmaegi-induced high river discharge to assess a possible source of generating morphological change in the Mailiao Port's navigation channel. The mechanisms and effects that dominantly control the transport of sediment particles at the Zhuoshui River mouth and adjacent to the Mailiao Port were also investigated. Two numerical models named Regional Ocean Model System (ROMS) and NearCom-TVD 10.0 were used to simulate the scenarios. Model results demonstrate that the mechanisms of sediment transport processes were influenced mainly by river discharge, sediment grain distributions, tidal currents, Coriolis force, and extreme weather conditions. During a typhoon in the summer, the simulated model indicates that the transport processes of river plumes toward the offshore area were interrupted by intensive tidal currents. Because of the Coriolis force and river flow, the river plume moved northward or deposited surrounding the river mouth. Tidal currents modulated the sediment resuspension in the inner shelf. The residual tidal circulations transported the river plume southward and shoreward to the Mailiao Port's navigation channel and port basin south of the river mouth. The port siltation most likely occurs during the winter, when wave-driven longshore currents carry a substantial sediment volume from the river mouth, primarily from the north towards the south. The deposited sediment in the port's northern area was further transported to the port basin or navigation channel, generating siltation.

    Table of Contents Abstract i Table of Contents ii Figures iii Tables ix Chapter 1. Introduction 1 1.1. Research Motivation and Purpose 1 1.2. Literature Review 4 1.2.1. Numerical Studies of River Plume Processes 4 1.2.2. River Plume and its Impact on the Port in the Southern River Mouth 7 1.2.3. Hydrodynamics and Sediment Transport during Typhoon 9 1.3. Structure of Dissertation 12 Chapter 2. Study Area and Methods 14 2.1. The Zhuoshui River 14 2.2. The Mailiao Port 16 2.3. Methods 19 2.3.1. Regional Ocean Model System (ROMS) 20 2.3.2. NearCom-TVD 10.0 27 2.4. Model Setup and Calibration 32 2.4.1. Model Setup and Calibration of ROMS 32 2.4.2. Model Validation of ROMS 34 2.4.3. Model Setup and Calibration of NearCom-TVD 10.0 39 2.4.4. Model Validation of NearCom-TVD 10.0 41 Chapter 3. Effects of Meso-tidal Conditions and Typhoon 44 3.1. Effects of Low-Discharge Conditions to the Flow Field 44 3.2. Effects of Typhoon Conditions to the Flow Field and Sediment Transport 46 3.3. Model Results for Sediment Fluxes, Seabed Changes, and Residual Circulations 49 Chapter 4. Littoral Drift Processes to the Navigation Channel: Mechanisms and Effects 55 4.1. Significant Wave Heights and Directions in the Seasonal Variations 55 4.2. Residual Circulations in the Seasonal Variations 56 4.3. Model Results for Morphological Evolution and a Countermeasure to Decrease Siltation 58 Chapter 5. Summary and Conclusions 62 References 64

    Antea, 2016. Research and monitoring alternative disposal strategy for maintenace dredging in Zeebrugge 2013-2015 (16EF/2011/28). Subreport 6: Orienting study of potential new disposal locations. Ghen, Belgium.

    Ariathurai, R., Arulanandan, K., 1978. Erosion Rates of Cohesive Soils. J. Hydraul. Div. 104, 279–283. https://doi.org/10.1061/JYCEAJ.0004937

    Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions 1. Model description and validation. J. Geophys. Res. 104, 7649–7666. https://doi.org/10.1029/98JC02622

    Boothroyd, J.C., 1978. Mesotidal Inlets and Estuaries. In: Davis R.A. (eds) Coastal Sedimentary Environments. Springer N. Y. NY. https://doi.org/10.1007/978-1-4684-0056-4_7

    Chapman, D.C., 1985. Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model. J. Phys. Oceanogr. 15, 1060–1075. https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2

    Chassignet, E.P., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel, D.B., Ma, C.-C., Mehra, A., Paiva, A.M., Sirkes, Z., 2000. DAMÉE-NAB: the base experiments. Dyn. Atmospheres Oceans 32, 155–183. https://doi.org/10.1016/S0377-0265(00)00046-4

    Chen, J.-L., Shi, F., Hsu, T.-J., Kirby, J.T., 2014a. NearCoM-TVD — A quasi-3D nearshore circulation and sediment transport model. Coast. Eng. 91, 200–212. https://doi.org/10.1016/j.coastaleng.2014.06.002

    Chen, J.-L., Shi, F., Hsu, T.-J., Kirby, J.T., 2014b. NearCom-TVD - A quasi-3D nearshore circulation and sediment transport model. Coast. Eng. 91, 200–212. https://doi.org/doi.org/10.1016/j.coastaleng.2014.06.002

    Chen, S.-N., Geyer, W., Hsu, T., 2013a. A numerical investigation of the dynamics and structure of hyperpycnal river plumes on sloping continental shelves. J. Geophys. Res. 118, 2702–2718.

    Chen, S.-N., Geyer, W.R., Hsu, T.-J., 2013b. A numerical investigation of the dynamics and structure of hyperpycnal river plumes on sloping continental shelves. J. Geophys. Res. Oceans 118, 2702–2718. https://doi.org/10.1002/jgrc.20209

    Chiang, L.-C., Wang, Y.-C., Liao, C.-J., 2019. Spatiotemporal Variation of Sediment Export from Multiple Taiwan Watersheds. Int. J. Environ. Res. Public. Health 16. https://doi.org/10.3390/ijerph16091610

    Chien, H., Chiang, W.-S., Kao, S.-J., Liu, J.T., Liu, K.-K., Liu, P.L.-F., 2011. Sediment dynamics observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan Strait. Oceanography 24, 122–131. http://dx.doi.org/10.5670/oceanog.2011.100

    Church, J.C., Thornton, E.B., 1993. Effects of breaking wave induced turbulence within a longshore current model. Coast. Eng. 20, 1–28. https://doi.org/10.1016/0378-3839(93)90053-B

    Clark, J.B., Mannino, A., 2022. The Impacts of Freshwater Input and Surface Wind Velocity on the Strength and Extent of a Large High Latitude River Plume. Front. Mar. Sci. 8.

    Curchitser, E.N., Haidvogel, D.B., Hermann, A.J., Dobbins, E.L., Powell, T.M., Kaplan, A., 2005. Multi-scale modeling of the North Pacific Ocean: Assessment and analysis of simulated basin-scale variability (1996–2003). J. Geophys. Res. Oceans 110. https://doi.org/10.1029/2005JC002902

    Dadson, S., Hovius, N., Pegg, S., Dade, W.B., Horng, M.J., Chen, H., 2005. Hyperpycnal river flows from an active mountain belt. J. Geophys. Res. Earth Surf. 110. https://doi.org/10.1029/2004JF000244

    Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S.D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C.P., Lague, D., Lin, J.-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651. https://doi.org/10.1038/nature02150

    Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.-C., Hsu, M.-L., Lin, C.-W., Horng, M.-J., Chen, T.-C., Milliman, J., Stark, C.P., 2004. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 32, 733–736. https://doi.org/10.1130/G20639.1

    Dujardin A., Vanlede J., van Hoestenberghe T., Verwaest T., Mostaert F., 2016. Influencing factors on the level of the top of the mud layer in CDNB: Subreport 2—Analysis 1999–2011. Version 5.0. WL Reports, 00_078. Flanders Hydraulics Research & Antea Group, Antwerp, Belgium.

    Fachin, S., Sancho, F., 2006. M-SHORECIRC: A Morphodynamic Model. J. Coast. Res. 1363–1367.

    Fernández-Nóvoa, D., Gómez-Gesteira, M., Mendes, R., deCastro, M., Vaz, N., Dias, J.M., 2017. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery. PloS One 12, e0187036. https://doi.org/10.1371/journal.pone.0187036

    Fettweis, M., Francken, F., Eynde, D.V. den, Verwaest, T., Janssens, J., Lancker, V.V., 2010. Storm influence on SPM concentrations in a coastal turbidity maximum area with high anthropogenic impact (southern North Sea). Cont. Shelf Res. 30, 1417–1427. https://doi.org/10.1016/j.csr.2010.05.001

    Flores, R.P., Rijnsburger, S., Horner-Devine, A.R., Kumar, N., Souza, A.J., Pietrzak, J.D., 2020. The Formation of Turbidity Maximum Zones by Minor Axis Tidal Straining in Regions of Freshwater Influence. J. Phys. Oceanogr. 50, 1265–1287. https://doi.org/10.1175/JPO-D-18-0264.1

    Galewsky, J., Stark, C., Dadson, S., Wu, C.-C., Sobel, A., Horng, M., 2006. Tropical cyclone triggering of sediment discharge in Taiwan. J. Geophys. Res. 111, F03014. https://doi.org/10.1029/2005JF000428

    Gauckler, Ph., 1867. Etudes théoriques et pratiques sur l’écoulement et le mouvement des eaux. Verlag nicht ermittelbar, Erscheinungsort nicht ermittelbar.

    Goldsmith, S.T., Carey, A.E., Lyons, W.B., Kao, S.-J., Lee, T.-Y., Chen, J., 2008. Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology 36, 483–486. https://doi.org/10.1130/G24624A.1

    Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C., Wilkin, J., 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Predict. Weather Clim. Extreme Events 227, 3595–3624. https://doi.org/10.1016/j.jcp.2007.06.016

    Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., Shchepetkin, A.F., 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn. Atmospheres Oceans 32, 239–281. https://doi.org/10.1016/S0377-0265(00)00049-X

    Harris, C.K., Syvitski, J., Arango, H.G., Meiburg, E.H., Cohen, S., Jenkins, C.J., Birchler, J.J., Hutton, E.W.H., Kniskern, T.A., Radhakrishnan, S., Auad, G., 2020. Data-driven, multi-model workflow suggests strong influence from hurricanes on the generation of turbidity currents in the Gulf of Mexico. J. Mar. Sci. Eng. 8. https://doi.org/10.3390/jmse8080586

    Harris, C.K., Wiberg, P.L., 2001. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves. Comput. Geosci. 27, 675–690. https://doi.org/10.1016/S0098-3004(00)00122-9

    Higgins, M.S.L., Stewart, R.W., 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Oceanogr. Abstr. 11, 529–562. https://doi.org/10.1016/0011-7471(64)90001-4

    Higgins, M.S.L., Stewart, R.W., 1962. Radiation stress and mass transport in gravity waves, with application to “surf beats.” J. Fluid Mech. 13, 481–504. https://doi.org/10.1017/S0022112062000877

    Ho, M., 2019. Modeling and Validation of Coastal Wastewater Effluent Plumes Using High-Resolution Nonhydrostatic Regional Ocean Modeling System. UCLA.

    Horner-Devine, A., Hetland, R., Macdonald, D., 2015. Mixing and Transport in Coastal River Plumes. Annu. Rev. Fluid Mech. 47, 569–594. https://doi.org/10.1146/annurev-fluid-010313-141408

    Hsu, J.-Y., Lien, R.-C., D’Asaro, E.A., Sanford, T.B., 2017. Estimates of Surface Wind Stress and Drag Coefficients in Typhoon Megi. J. Phys. Oceanogr. 47, 545–565. https://doi.org/10.1175/JPO-D-16-0069.1

    Huh, C.-A., Chen, W., Hsu, F.-H., Su, C.-C., Chiu, J.-K., Lin, S., Liu, C.-S., Huang, B.-J., 2011. Modern (<100 years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Cont. Shelf Res. 31, 47–63. https://doi.org/10.1016/j.csr.2010.11.002

    Hung, C., 2013. A 300-Year Typhoon Record in Taiwan and the Relationship with Solar Activity. Terr. Atmospheric Ocean. Sci. 24, 737. https://doi.org/10.3319/TAO.2013.02.18.01(A)

    Institute of Hydrology and Oceanography, National Central University, 2018. The report of field observation of sedimentation nearby the Mailiao Port (in Chinese version). Taiwan.

    Jan, S., Wang, J., Chern, C.-S., Chao, S.-Y., 2002. Seasonal variation of the circulation in the Taiwan Strait. J. Mar. Syst. 35, 249–268. https://doi.org/doi.org/10.1016/S0924-7963(02)00130-6

    Jonsson, I.G., 1966. Wave boundary layers and friction factors, in: Proceedings of 10th Conference on Coastal Engineering, 10. Tokyo, Japan, pp. 127–148. https://doi.org/10.9753/icce.v10.9

    Kao, S.J., Horng, C.S., Hsu, S.C., Wei, K.Y., Chen, J., Lin, Y.S., 2005. Enhanced deepwater circulation and shift of sedimentary organic matter oxidation pathway in the Okinawa Trough since the Holocene. Geophys. Res. Lett. 32. https://doi.org/10.1029/2005GL023139

    Kao, S.-J., Jan, S., Hsu, S.-C., Lee, T.-Y., Dai, M., 2008. Sediment Budget in the Taiwan Strait with High Fluvial Sediment Inputs from Mountainous Rivers: New Observations and Synthesis. Terr. Atmospheric Ocean. Sci. - TERR ATMOS OCEAN SCI 19. https://doi.org/10.3319/TAO.2008.19.5.525(Oc)

    Kao, S.J., Milliman, J.D., 2008. Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events, and Human Activities. J. Geol. 116, 431–448. https://doi.org/10.1086/590921

    Korotenko, K., Osadchiev, A., Zavialov, P., Kao, R., Ding, C., 2014. Effects of bottom topography on dynamics of river discharges in tidal regions: Case study of twin plumes in Taiwan Strait. Ocean Sci. 11. https://doi.org/10.5194/osd-11-1149-2014

    Larson, M., 2005. Numerical Modeling. In: Schwartz M.L. (eds) Encyclopedia of Coastal Science., Encyclopedia of Earth Science Series. Springer, Dordrecht, the Netherlands.

    Lee, J., Liu, J., Hung, C.-C., Lin, S., Du, X., 2016. River plume induced variability of suspended particle characteristics. Mar. Geol. 380, 219–230. https://doi.org/10.1016/j.margeo.2016.04.014

    Liu, J., Kao, S.-J., Huh, C.-A., Hung, C.-C., 2013. Gravity flows associated with floods and carbon burial: Taiwan as instructional source area. Annu. Rev. Mar. Sci. 5, 47–68.

    Liu, Q., Rothstein, L.M., Luo, Y., 2017. A periodic freshwater patch detachment process from the Block Island Sound estuarine plume. J. Geophys. Res. Oceans 122, 570–586. https://doi.org/10.1002/2015JC011546

    Manning, R., 1891. On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland 161–207.

    Martin, P.J., Smith, S., Posey, P.G., Dawson, G.M., 2009. Use of the Oregon State University Tidal Inversion Software (OTIS) to generate improved tidal prediction in the East-Asian Seas. Naval Research Laboratory, Oceanography Division, Stennis Space Center, MS.

    Meiburg, E., Kneller, B., 2010. Turbidity Currents and Their Deposits. Annu. Rev. Fluid Mech. 42, 135–156. https://doi.org/10.1146/annurev-fluid-121108-145618

    MHAC (Mailiao Harbor Administration Coorporation, 2020. Final Report: Research on Drifting Sand and Siltation in Mailiao Port Channel and Preventive Measures (No. 63). Taiwan.

    MHAC (Mailiao Harbor Administration Corporation), 2020. Final Report: Research on Drifting Sand and Siltation in Mailiao Port Channel and Preventive Measures (Chinese Version). Taiwan.

    MHAC (Mailiao Harbor Administration Corporation), 2017. Mailiao industrial harbor environmental report 2017.

    Milliman, J., Kao, S.-J., 2005. Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super‐Typhoon Herb (1996) on Taiwanese Rivers. J. Geol. 113, 503–516. https://doi.org/10.1086/431906

    Milliman, J.D., Lin, S.W., Kao, S.J., Liu, J.P., Liu, C.S., Chiu, J.K., Lin, Y.C., 2007. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology 35, 779–782. https://doi.org/10.1130/G23760A.1

    Mirabito, C., Haley, P.J., Lermusiaux, P.F., Leslie, W.G., 2012. A River Discharge Model for Coastal Taiwan during Typhoon Morakot.

    Moore, A.M., Arango, H.G., Broquet, G., Powell, B.S., Weaver, A.T., Zavala-Garay, J., 2011. The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I – System overview and formulation. Prog. Oceanogr. 91, 34–49. https://doi.org/10.1016/j.pocean.2011.05.004

    Moriarty, J., Harris, C., Hadfield, M., 2014. A Hydrodynamic and Sediment Transport Model for the Waipaoa Shelf, New Zealand: Sensitivity of Fluxes to Spatially-Varying Erodibility and Model Nesting. J. Mar. Sci. Eng. 2, 336–369. https://doi.org/10.3390/jmse2020336

    Moriarty, J.M., Harris, C.K., Hadfield, M.G., 2015. Event-to-seasonal sediment dispersal on the Waipaoa River Shelf, New Zealand: A numerical modeling study. Cont. Shelf Res. 110, 108–123. https://doi.org/10.1016/j.csr.2015.10.005

    Mulder, T., Syvitski, J.P.M., 1995. Turbidity Currents Generated at River Mouths during Exceptional Discharges to the World Oceans. J. Geol. 103, 285–299. https://doi.org/10.1086/629747

    Oliveira, A., 1980. Coriolis’ Theory of Machines and Mechanisms.

    Osadchiev, A., Korotenko, K., Zavialov, P., Chiang, W.-S., Liu, C.-C., 2016. Transport and bottom accumulation of fine river sediments under typhoon conditions and associated submarine landslides: Case study of the Peinan River, Taiwan. Nat. Hazards Earth Syst. Sci. 16, 41–54. https://doi.org/10.5194/nhess-16-41-2016

    Parchure, T.M., 2005. Structural methods to reduce navigation channel shoaling.

    Pieters, A., van Parys, M., Dumon, G., Speleers, L., 2002. Chemical monitoring of maintenance dredging operations at Zeebrugge. Int. Assoc. Dredg. Co. 3–10.

    Prumm, M., Iglesias, G., 2016. Impacts of port development on estuarine morphodynamics: Ribadeo (Spain). Ocean Coast. Manag. 130, 58–72. https://doi.org/10.1016/j.ocecoaman.2016.05.003

    Putrevu, U., Svendsen, I.A., 1999. Three-dimensional dispersion of momentum in wave-induced nearshore currents. EurJ Mech B Fluids 18, 83–101. https://doi.org/10.1016/S09997-7546(99)80038-7

    Ralston, D.K., Geyer, W.R., 2017. Sediment Transport Time Scales and Trapping Efficiency in a Tidal River. J. Geophys. Res. Earth Surf. 122, 2042–2063. https://doi.org/10.1002/2017JF004337

    Ralston, D.K., Geyer, W.R., 2009. Episodic and Long-Term Sediment Transport Capacity in The Hudson River Estuary. Estuaries Coasts 32, 1130. https://doi.org/10.1007/s12237-009-9206-4

    Ralston, D.K., Geyer, W.R., Warner, J.C., 2012. Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping. J. Geophys. Res. Oceans 117. https://doi.org/10.1029/2012JC008124

    Ralston, D.K., Warner, J.C., Geyer, W.R., Wall, G.R., 2013. Sediment transport due to extreme events: The Hudson River estuary after tropical storms Irene and Lee. Geophys. Res. Lett. 40, 5451–5455. https://doi.org/10.1002/2013GL057906

    Ris, R.C., Holthuijsen, L.H., Booij, N., 1999. A third-generation wave model for coastal regions 2. Verification. J. Geophys. Res. 104, 7667–7681. https://doi.org/10.1029/1998JC900123

    Roberts, P., Snyder, W., Baumgartner, D., 1989. Ocean Outfalls. I: Submerged Wastefield Formation. U.S. Environmental Protection Agency, Washington, D.C.

    Roelvink, J.A., 2006. Coastal morphodynamic evolution techniques. Coast. Hydrodyn. Morphodynamics 53, 277–287. https://doi.org/10.1016/j.coastaleng.2005.10.015

    Romdani, A., Chen, J.-L., Chien, H., Lin, J.-H., Hung, C.-K., Huang, Y.-Q., 2022a. Downdrift Port Siltation Adjacent to a River Mouth: Mechanisms and Effects of Littoral Sediment Transport to the Navigation Channel. J. Waterw. Port Coast. Ocean Eng. 148, 05022001. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000700

    Romdani, A., Chen, J.-L., Chien, H., Lin, J.-H., Liao, C.-Y., Hou, C.-Q., 2022b. Downdrift Port Siltation Adjacent to a River Mouth: Effects of Meso-tidal Conditions and Typhoon. J. Waterw. Port Coast. Ocean Eng. 149, 1–11. https://doi.org/10.1061/JWPED5.WWENG-1940

    Romdani, A., Tsai, S.-D., Lin, Y.-C., Chen, J.-L., 2022c. A numerical investigation on the occurrence of typhoon-triggered density current of the 2008-flood event . Coast. Offshore Sci. Eng.

    Sequeiros, O.E., Mosquera, R., Pedocchi, F., 2018. Internal Structure of a Self-Accelerating Turbidity Current. J. Geophys. Res. Oceans 123, 6260–6276. https://doi.org/10.1029/2018JC014061

    Shchepetkin, A.F., McWilliams, J.C., 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9, 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002

    Shi, F., Hanes, D.M., Kirby, J.T., Erikson, L., Barnard, P., Eshleman, J., 2011. Pressure-gradient-driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system. J. Geophys. Res. Oceans 116. https://doi.org/10.1029/2010JC006788

    Shi, F., Svendsen, I.A., Kirby, J.T., McKee Smith, J., 2003. A curvilinear version of a quasi-3D nearshore circulation model. Coast. Eng. 49, 99–124. https://doi.org/10.1016/S0378-3839(03)00049-8

    Soulsby, R., 1997. Dynamics of marine sands. ICE Publishing, 40 Marsh Wall, London.

    Svendsen, I.A., Haas, K., Zhao, Q., 2004. Quasi-3D nearshore circulation model SHORECIRC Version 2.0. Center for Applied Coastal Research, University of Delaware, Newark, DE 19716, U.S.A.

    Svendsen, I.A., Haas, K.A., Zhao, Q., Research, U. of D.C. for A.C., Laboratory, U. of D.O.E., 2002. Quasi-3D Nearshore Circulation Model SHORECIRC Version 2.0, Research report (University of Delaware. Department of Civil Engineering. Center for Applied Coastal Research). University of Delaware, Ocean Engineering Laboratory, Center for Applied Coastal Research.

    Svendsen, I.A., Putrevu, U., 1990. Nearshore circulation with 3-D profiles, in: Proceedings of 22nd Conference on Coastal Engineering. Delft, The Netherlands, pp. 241–254. https://doi.org/10.1061/9780872627765.020

    The WAMDI group, 1988. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, 1775–1810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2

    Tsai, S.-D., Chen, J.-L., Hsu, W.-Y., Tsai, W.-Z., Romdani, A., 2023. A numerical investigation of the transport process of density currents over steep slopes and its implications for subsea cable breaks. Ocean Eng. 269, 113446. https://doi.org/10.1016/j.oceaneng.2022.113446

    Van Maren, D.S., Vroom, J., Fettweis, M., Vanlede, J., 2020. Formation of the Zeebrugge coastal turbidity maximum: The role of uncertainty in near-bed exchange processes. Mar. Geol. 425, 106186. https://doi.org/10.1016/j.margeo.2020.106186

    Van Rijn, L.C., 2013. Tidal phenomena in the Scheldt Estuary, part 2.

    Van Rijn, L.C., 1993. Principles of sediment transport in rivers, estuaries, and coastal seas. Aqua Publications, Amsterdam, the Netherlands.

    Van Rijn, L.C., 1984. Sediment transport, part III: bed forms and alluvial roughness. J. Hydraul. Eng. 110, 1733–1755. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1733)

    Vanlede, J., Dujardin, A., 2014. A geometric method to study water and sediment exchange in tidal harbors. Ocean Dyn. 64, 1631–1641. https://doi.org/10.1007/s10236-014-0767-9

    Vanlede, J., Dujardin, A., Fettweis, M., Van Hoestenberghe, T., Martens, C., 2019. Mud dynamics in the Port of Zeebrugge. Ocean Dyn. 69, 1085–1099. https://doi.org/10.1007/s10236-019-01273-3

    Verlaan, P.A., Spanhoff, R., 2000. Massive sedimentation events at the mouth of the Rotterdam Waterway. J. Coast. Res. 16, 458–469.

    Walsh, J.P., Nittrouer, C.A., 2009. Understanding fine-grained river-sediment dispersal on continental margins. Mar. Geol. 263, 34–45. https://doi.org/10.1016/j.margeo.2009.03.016

    Warner, J.C., Geyer, W.R., Lerczak, J.A., 2005. Numerical modeling of an estuary: A comprehensive skill assessment. J. Geophys. Res. Oceans 110. https://doi.org/10.1029/2004JC002691

    Warner, J.C., Perlin, N., Skyllingstad, E.D., 2008. Using the Model Coupling Toolkit to couple earth system models. Environ. Model. Softw. 23, 1240–1249. https://doi.org/10.1016/j.envsoft.2008.03.002

    Water Resources Agency (WRA), M., 2021. Zhuoshui River: Basic hydrological data. URL https://eng.wra.gov.tw/cp.aspx?n=5135 (accessed 7.12.21).

    Winterwerp, J.C., 2006. Stratification effects by fine suspended sediment at low, medium, and very high concentrations. J. Geophys. Res. Oceans 111. https://doi.org/10.1029/2005JC003019

    WRA (Water Resources Agency), 2011. Zhuoshui River: Basic hydrological data. URL https://eng.wra.gov.tw

    Wu, C.-C., Kuo, Y.-H., 1999. Typhoons Affecting Taiwan: Current Understanding and Future Challenges. Bull. Am. Meteorol. Soc. 80, 67–80. https://doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2

    Xiao, Z., Wang, X.H., Roughan, M., Harrison, D., 2019. Numerical modelling of the Sydney Harbour Estuary, New South Wales: Lateral circulation and asymmetric vertical mixing. Estuar. Coast. Shelf Sci. 217, 132–147. https://doi.org/DOI: 10.1016/j.ecss.2018.11.004

    Yu, X., Guo, X., Gao, H., 2020. Detachment of Low-Salinity Water From the Yellow River Plume in Summer. J. Geophys. Res. Oceans 125, e2020JC016344. https://doi.org/10.1029/2020JC016344

    Yu, X., Guo, X., Morimoto, A., Buranapratheprat, A., 2018. Simulation of river plume behaviors in a tropical region: Case study of the Upper Gulf of Thailand. Cont. Shelf Res. 153, 16–29. https://doi.org/10.1016/j.csr.2017.12.007

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE