| 研究生: |
陳銘德 Chen, Ming-De |
|---|---|
| 論文名稱: |
矽鍺熱電能源採集器的結構設計與性能模擬之研究 Structure Design and Performance Analysis of SiGe Thermoelectric Energy Harvesters |
| 指導教授: |
楊世銘
Yang, Shih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 能源採集器 、熱電效應 、數值分析 |
| 外文關鍵詞: | Energy harvester, thermoelectric effect, numerical analysis |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,無線網路感測器亦或穿戴式裝置的應用日益增加,其中關鍵的是一體積小、能長時間供應能源的電池,然而一般微型電池已開始無法滿足其需求。微型能源採集器可從周遭環境轉換能源為電能,其中熱電能源採集器能夠將環境中廢熱轉換成可用之電能,而且無可動組件加上電能供應穩定可靠性高。故本論文利用現有最新金氧半導體製程技術,考量其材料奈米性質運用於結構設計並加以分析。透過分析數值模型,其元件之功率輸出為0.125 μW/cm2K2,電壓方面係數為25.91 V/cm2K。最終設計一矽鍺微型熱電能源採集器晶片,晶片尺寸為 2.2 mm × 2.25 mm,其中並聯三組矽鍺微型熱電能源採集器,總輸出電壓3.75 V及輸出功率2.084 μW。
In the development of wireless sensor network and wearable device, battery endurance is one of the most problems. Thermoelectric generator can convert electric power from environment without requiring moving components. This thesis proposes a novel thermoelectric energy harvester by TSMC 0.18 μm BiCMOS mixed signal SiGe standard process. The simulation of low-dimension thermoelectric materials property shows that the optimal power factor 0.125 μW/cm2K2 and voltage factor 25.91 V/cm2K can be achieved by a thermoelectric energy harvester with thermoleg length and width 45 μm × 2 μm. A 2.2 mm × 2.25 mm thermoelectric energy harvester chip with three sets of 2.01 mm × 0.72 mm harvester in parallel provides 3.75 V and 2.084 μW.
Buchli, B., Sutton, F. and Beutel, J., “Gps-Equipped Wireless Sensor Network Node for High-Accuracy Positioning Applications,” European Conference on Wireless Sensor Networks, Vol. pp. 179-195, 2012
Cao, H., Leung, V., Chow, C. and Chan, H., “Enabling Technologies for Wireless Body Area Networks: A Survey and Outlook,” IEEE Communications Magazine, Vol. 47, pp. 84-93, 2009.
Carmo, J. P., Goncalves, L. M., and Correia, J. H., “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Transactions on Industrial Electronics, Vol. 57, pp. 861-867, 2010.
Chen, A., Madan, D., Wright, P. and Evans, J., “Dispenser-Printed Planar Thick-Film Thermoelectric Energy Generators,” Journal of Micromechanics and Microengineering, Vol. 21, pp. 104006, 2011.
Chen, L., Cao, D., Huang, Y. and Peng, F. Z., “Modeling and Power Conditioning for Thermoelectric Generation,” Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, pp. 1098-1103, 2008
Francioso, L., De Pascali, C., Farella, I., Martucci, C., Cretì, P., Siciliano, P. and Perrone, A., “Flexible Thermoelectric Generator for Ambient Assisted Living Wearable Biometric Sensors,” Journal of Power Sources, Vol. 196, pp. 3239-3243, 2011.
Fujita, T., “Energy Harvesters for Human-Monitoring Applications,” IEICE Transactions on Electronics, Vol. 96, pp. 766-773, 2013.
Goldsmid, H. J., “Thermoelectric Refrigeration, ” Plenum Press, New York, 1964.
Glatz, W., Muntwyler, S. and Hierold, C., “Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator,” Sensors and Actuators A: Physical, Vol. 132, pp. 337-345, 2006.
Glosch, H., Ashauer, M., Pfeiffer, U. and Lang, W., “A Thermoelectric Converter for Energy Supply,” Sensors and Actuators A: Physical, Vol. 74, pp. 246-250, 1999.
Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A. and Porta-Gándara, M. Á., “Automated Irrigation System Using a Wireless Sensor Network and GPRS Module,” IEEE Transactions on Instrumentation and Measurement, Vol. 63, pp. 166-176, 2014.
Horn, S. B., “Proceedings of The 1st National Thermogenic Cooler Conference,” Center for Night Vision and Electro-Optics, Fort Belvoir, 1992.
Hicks, L., Harman, T., Sun, X. and Dresselhaus, M., “Experimental Study of The Effect of Quantum-Well Structures on The Thermoelectric Figure of Merit,” Physical Review B, Vol. 53, pp. R10493, 1996.
Hicks, L. D. and Dresselhaus, M. S., “Effect of Quantum-Well Structures on The Thermoelectric Figure of Merit,” Physical Review B, Vol. 47, pp. 12727-12731, 1993.
Hu, X., Wang, B. and Ji, H., “A Wireless Sensor Network‐Based Structural Health Monitoring System for Highway Bridges,” Computer‐Aided Civil and Infrastructure Engineering, Vol. 28, pp. 193-209, 2013.
Huesgen, T., Woias, P. and Kockmann, N., “Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency,” Sensors and Actuators A: Physical, Vol. 145, pp. 423-429, 2008.
Jang, B., Han, S. and Kim, J.-Y., “Optimal Design for Micro-Thermoelectric Generators Using Finite Element Analysis,” Microelectronic Engineering, Vol. 88, pp. 775-778, 2011.
Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R. W., Cuff, D. C., Tang, M. Y. and Dresselhaus, M. S., “Enhanced Thermoelectric Figure-of-Merit in Nanostructured P-Type Silicon Germanium Bulk Alloys,” Nano letters, Vol. 8, pp. 4670-4674, 2008.
Kao, P.-H., Shih, P.-J., Dai, C.-L. and Liu, M.-C., “Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators,” Sensors, Vol. 10, pp. 1315-1325, 2010.
Khedo, K. K., Perseedoss, R. and Mungur, A., “A Wireless Sensor Network Air Pollution Monitoring System,” arXiv preprint arXiv:1005.1737, Vol. pp. 2010.
Khitun, A., Balandin, A., Wang, K. and Chen, G., “Enhancement of The Thermoelectric Figure of Merit of Si1− xGex Quantum Wires Due to Spatial Confinement of Acoustic Phonons,” Physica E: Low-dimensional Systems and Nanostructures, Vol. 8, pp. 13-18, 2000.
Kim, M.-K., Kim, M.-S., Lee, S., Kim, C. and Kim, Y.-J., “Wearable Thermoelectric Generator for Harvesting Human Body Heat Energy,” Smart Materials and Structures, Vol. 23, pp. 105002, 2014.
Kouma, N., Nishino, T. and Tsuboi, O., “A High-Output-Voltage Micro-Thermoelectric Generator Having High-Aspect-Ratio Structure,” Journal of Micromechanics and Microengineering, Vol. 23, pp. 114005, 2013.
Lee, T. H., “Development of Multilayered Quantum Well Thermoelectric and Low Frequency Vibration Energy Harvesters,” Ph.D. Thesis, National Cheng Kung University 2008.
Leonov, V., “Simulation of Maximum Power in The Wearable Thermoelectric Generator with a Small Thermopile,” Microsystem Technologies, Vol. 17, pp. 495-504, 2011.
Leonov, V., Torfs, T., Fiorini, P. and Van Hoof, C., “Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes,” IEEE Sensors Journal, Vol. 7, pp. 650-657, 2007.
Li, L., Xiaoguang, H., Ke, C. and Ketai, H., “The Applications of Wifi-Based Wireless Sensor Network in Internet of Things and Smart Grid,” Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on, pp. 789-793, 2011
Li, Y., Buddharaju, K., Singh, N., Lo, G. and Lee, S., “Chip-Level Thermoelectric Power Generators Based on High-Density Silicon Nanowire Array Prepared with Top-Down CMOS Technology,” IEEE Electron Device Letters, Vol. 32, pp. 674-676, 2011.
Liang, G., Zhou, J. and Huang, X., “Analytical Model of Parallel Thermoelectric Generator,” Applied Energy, Vol. 88, pp. 5193-5199, 2011.
Mayer, P. and Ram, R., “Optimization of Heat Sink–Limited Thermoelectric Generators,” Nanoscale and Microscale Thermophysical Engineering, Vol. 10, pp. 143-155, 2006.
Mingo, N., “Thermoelectric Figure of Merit and Maximum Power Factor in III–V Semiconductor Nanowires,” Applied Physics Letters, Vol. 84, pp. 2652-2654, 2004.
Montecucco, A. and Knox, A. R., “Accurate Simulation of Thermoelectric Power Generating Systems,” Applied Energy, Vol. 118, pp. 166-172, 2014.
Montecucco, A., Siviter, J. and Knox, A. R., “The effect of Temperature Mismatch on Thermoelectric Generators Electrically Connected in Series and Parallel,” Applied Energy, Vol. 123, pp. 47-54, 2014.
Pannetier, B., Dezert, J. and Sella, G., “Multiple Target Tracking with Wireless Sensor Network for Ground Battlefield Surveillance,” Information Fusion (FUSION), 2014 17th International Conference on, pp. 1-8, 2014
Peng, S.-W., Shih, P.-J. and Dai, C.-L., “Manufacturing and Characterization of a Thermoelectric Energy Harvester Using the CMOS-MEMS Technology,” Micromachines, Vol. 6, pp. 1560-1568, 2015.
Rabin, O., Herz, P., Lin, Y., Cronin, S., Akinwande, A. and Dresselhaus, M., “Arrays of Nanowires on Silicon Wafers,” Thermoelectrics, 2002. Proceedings ICT'02. Twenty-First International Conference on, pp. 276-279, 2002
Roth, R., Rostek, R., Cobry, K., Kohler, C., Groh, M., and Woias, P., “Design and Characterization of Micro Thermoelectric Cross-Plane Generators With Electroplated and Reflow Soldering,” Journal of Microelectromechanical Systems, Vol. 23, pp. 961-971, 2014.
Ramesh, M. V., “Design, Development, and Deployment of a Wireless Sensor Network for Detection of Landslides,” Ad Hoc Networks, Vol. 13, pp. 2-18, 2014.
Sharp, J., Thompson, A., Trahey, L. and Stacy, A., “Measurement of Thermoelectric Nanowire Array Properties,” Thermoelectrics, 2005. ICT 2005. 24th International Conference on, Vol. pp. 83-86, 2005
Strasser, M., Aigner, R., Franosch, M. and Wachutka, G., “Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-Sige Surface Micromachining,” Sensors and Actuators A: Physical, Vol. 97, pp. 535-542, 2002.
Strasser, M., Aigner, R., Lauterbach, C., Sturm, T. F., Franosch, M. and Wachutka, G., “Micromachined CMOS thermoelectric generators as on-chip power supply,” Sensors and Actuators A: Physical, Vol. 114, pp. 362-370, 2004.
Swathi, K., Sivanagaraju, V., Manikanta, A. and Kumar, S. D., “Traffic Density Control and Accident Indicator Using WSN,” Traffic, Vol. 2, 2016.
Vo, M.-T., Nghi, T. T., Tran, V.-S., Mai, L. and Le, C.-T., “Wireless Sensor Network for Real Time Healthcare Monitoring: Network Design and Performance Evaluation Simulation,” 5th International Conference on Biomedical Engineering in Vietnam, Vol. pp. 87-91, 2015
Vullers, R., van Schaijk, R., Doms, I., Van Hoof, C. and Mertens, R., “Micropower Energy Harvesting,” Solid-State Electronics, Vol. 53, pp. 684-693, 2009.
Vullers, R. J., Van Schaijk, R., Visser, H. J., Penders, J. and Van Hoof, C., “Energy Harvesting for Autonomous Wireless Sensor Networks,” IEEE Solid-State Circuits Magazine, Vol. 2, pp. 29-38, 2010.
Wang, W., Cionca, V., Wang, N., Hayes, M., O'Flynn, B. and O'Mathuna, C., “Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks,” International Journal of Distributed Sensor Networks, Vol. 9, pp. 232438, 2013.
Wojtas, N., Rüthemann, L., Glatz, W. and Hierold, C., “Optimized Thermal Coupling of Micro Thermoelectric Generators for Improved Output Performance,” Renewable Energy, Vol. 60, pp. 746-753, 2013.
Xie, J., Lee, C. and Feng, H., “Design, Fabrication, and Characterization of CMOS MEMS-Based Thermoelectric Power Generators,” Journal of Microelectromechanical Systems, Vol. 19, pp. 317-324, 2010.
Yang, S. M., Cong, M. and Lee, T., “Application of Quantum Well-Like Thermocouple to Thermoelectric Energy Harvester by BiCMOS Process,” Sensors and Actuators A: Physical, Vol. 166, pp. 117-124, 2011.
Yang, S. M., Lee, T. and Jeng, C. A., “Development of a Thermoelectric Energy Harvester with Thermal Isolation Cavity by Standard CMOS Process,” Sensors and Actuators A: Physical, Vol. 153, pp. 244-250, 2009.
Yun, D. S. and Lee, S.-J., “A study on the vehicular wireless base-station for in-vehicle wireless sensor network system,” Information and Communication Technology Convergence (ICTC), 2014 International Conference on, Vol. pp. 609-610, 2014
校內:2022-07-26公開