簡易檢索 / 詳目顯示

研究生: 邱豐正
Chiu, Feng-Cheng
論文名稱: 使用電感電容模型設計中紅外光吸收器
Using the Inductor-Capacitor Model to Design Mid-Infrared Absorbers
指導教授: 陳玉彬
Chen, Yu-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 68
中文關鍵詞: 光柵輻射性質嚴格耦合波理論輻射熱吸收器電感電容電路模型
外文關鍵詞: Gratings, LC circuit model, Rigorous coupled-wave analysis (RCWA), Radiative properties, Radiative thermal absorbers
相關次數: 點閱:109下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文設計一維單式週期性奈米結構作為波長選擇性吸收器,可應用於人體熱輻射吸收,目標為使其在波長10 μm處有高吸收率,其他波長則有低吸收率,為達成此效果,利用電感電容模型來設計結構尺寸的大小,使其在目標波長激發磁場共振子(Magnetic Polariton, MP),造成高吸收率,最後以嚴格耦合波理論(Rigorous Coupled-Wave Analysis, RCWA)為基礎之程式,運算輻射性質與繪製電磁場圖作為驗證。結果顯示所開發出之最佳結構,在TM偏振光入射時,於波長9.8 ~ 10.2 μm處具有0.8以上之吸收率,且在斜向入射  = 30、45 下,吸收峰值之波長的變動幅度在5 % 以內,本文成功證明,使用LC電路模型可有效且快速地找到適合使用的結構尺寸在特定波長增加吸收率,可避免一般搜尋與最佳化過程所需耗費的時間。

    Wavelength-selective absorbers for sensing human thermal radiation were numerically developed with a SiO2 spacer sandwiched between a gold substrate and gratings. All dimensions were determined with an LC (inductor-capacitor) circuit model which could induce MP (magnetic polariton) excitation at the target wavelength. Although the maximum absorptance is higher than 0.8 when the incident wavelength is near 10 μm, the absorptance is close to 0 in other wavelengths. Absorptance spectra and electromagnetic fields were acquired from programmed codes based on RCWA (rigorous coupled-wave analysis). This thesis demonstrates that the LC circuit model can be used to obtain suitable structure parameters and save time as compared to other optimized methods.

    摘要 I ABSTRACT II 誌謝 III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII LIST OF SYMBOLS X CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Literature Review 2 1.3 Objectives 3 CHAPTER 2 THEORETICAL BACKGROUND 5 2.1 Rigorous Coupled-Wavelength Analysis 5 2.2 LC Circuit Model 11 2.3 Enumerative Search Method 14 CHAPTER 3 PHYSICAL MECHANISM 15 3.1 Magnetic Polaritons 15 3.2 Waveguide 17 CHAPTER 4 LC CIRCUIT MODEL FOR ABSOBER 19 4.1 Design Idea and Method for Absorbers 19 4.2 Performance for Designed Structures 26 4.3 Spectra at Oblique Incidence 33 4.4 Electromagnetic Fields 35 4.5 Contour Plots 39 CHAPTER 5 CONCLUSION AND FUTURE WORK 45 REFERENCES 46 APPENDIX 52

    1. E. Nefzaoui, J. Drevillon and K. Joulain, "Selective emitters design and optimization for thermophotovoltaic applications," Journal of Applied Physics, 8,111, P084316, (2012)
    2. G. G. Kang, I. Vartiainen, B. F. Bai and J. Turunen, "Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating," Optics Express, 2,19, P770-778, (2011)
    3. X. Li, W. L. Zhang, J. Sun, Y. Q. Hou, W. W. Liu, K. He, C. Y. Wei and K. Yi, "Influence of SiO2 undercoat on the laser-induced damage threshold of 355 nm LaF3/AlF3 multilayer reflectors," Optics and Laser Technology, 49, P13-17, (2013)
    4. N. P. Sergeant, M. Agrawal and P. Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Optics Express, 6,18, P5525-5540, (2010)
    5. S. Ogawa, K. Okada, N. Fukushima and M. Kimata, "Wavelength selective uncooled infrared sensor by plasmonics," Applied Physics Letters, 2,100, P021111, (2012)
    6. V. Veerasubramanian, G. Beaudin, A. Giguere, B. Le Drogoff, V. Aimez and A. G. Kirk, "Waveguide-coupled drop filters on SOI using quarter-wave shifted sidewalled grating resonators," Optics Express, 14,20, P15983-15990, (2012)
    7. L. P. Wang and Z. M. Zhang, "Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays," Journal of the Optical Society of America B-Optical Physics, 12,27, P2595-2604, (2010)
    8. P. C. Li and E. T. Yu, "Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment," Journal of the Optical Society of America B-Optical Physics, 1,30, P27-32, (2013)
    9. J. Bischoff, "Formulation of the normal vector RCWA for symmetric crossed gratings in symmetric mountings," Journal of the Optical Society of America a-Optics Image Science and Vision, 5,27, P1024-1031, (2010)
    10. A. D. Papadopoulos and E. N. Glytsis, "Optical waveguide grating couplers: 2nd-order and 4th-order finite-difference time-domain analysis," Applied Optics, 27,48, P5164-5175, (2009)
    11. N. R. Anderson and R. E. Camley, "Attenuated total reflection study of bulk and surface polaritons in antiferromagnets and hexagonal ferrites: Propagation at arbitrary angles," Journal of Applied Physics, 1,113, (2013)
    12. K. C. Balram and D. A. B. Miller, "Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors," Optics Express, 20,20, P22735-22742, (2012)
    13. S. I. Mostafa, N. H. Rafat and S. A. El-Naggar, "One-dimensional metallic-dielectric (Ag/SiO2) photonic crystals filter for thermophotovoltaic applications," Renewable Energy, 45, P245-250, (2012)
    14. T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu and X. Zhang, "Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials," Journal of Applied Physics, 2,103, (2008)
    15. L. P. Wang and Z. M. Zhang, "Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics," Applied Physics Letters, 6,100, (2012)
    16. H. Sai, Y. Kanamori and H. Yugami, "Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures," Journal of Micromechanics and Microengineering, 9,15, PS243-S249, (2005)
    17. S. Glasberg, A. Sharon, D. Rosenblatt and A. A. Friesem, "Long-range surface plasmon resonances in grating-waveguide structures," Applied Physics Letters, 10,70, P1210-1212, (1997)
    18. J. LeGall, M. Olivier and J. J. Greffet, "Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton," Physical Review B, 15,55, P10105-10114, (1997)
    19. J. M. Hao, L. Zhou and M. Qiu, "Nearly total absorption of light and heat generation by plasmonic metamaterials," Physical Review B, 16,83, (2011)
    20. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Optics Express, 22,15, P14673-14678, (2007)
    21. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor and H. T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Optics Letters, 2,37, P154-156, (2012)
    22. Y.-B. Chen, J.-S. Chen and P.-f. Hsu, "Impacts of geometric modifications on infrared optical responses of metallic slit arrays," Optics Express, 17, P9789-9803, (2009)
    23. C. G. Hu, L. Y. Liu, Z. Y. Zhao, X. N. Chen and X. G. Luo, "Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies," Optics Express, 19,17, P16745-16749, (2009)
    24. J. X. Chen, P. Wang, Z. M. M. Zhang, Y. H. Lu and H. Ming, "Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure," Physical Review E, 2,84, (2011)
    25. J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang and Q. Z. Xue, "Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency," Optics Express, 14,20, P14871-14878, (2012)
    26. N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science, 5845,317, P1698-1702, (2007)
    27. M. G. Moharam and T. K. Gaylord, "Rigorous Coupled-Wave Analysis of Planar-Grating Diffraction," Journal of the Optical Society of America, 7,71, P811-818, (1981)
    28. M. G. Moharam, E. B. Grann, D. A. Pommet and T. K. Gaylord, "Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings," Journal of the Optical Society of America a-Optics Image Science and Vision, 5,12, P1068-1076, (1995)
    29. L. P. Wang and Z. M. Zhang, "Resonance transmission or absorption in deep gratings explained by magnetic polaritons," Applied Physics Letters, 11,95, (2009)
    30. S. S. Rao, Engineering Optimization Theory and Practice, (John Wiley & Sons, Hoboken, N.J, 2009)
    31. H. Li, Y. Anugrah, S. J. Koester and M. Li, "Optical absorption in graphene integrated on silicon waveguides," Applied Physics Letters, 11,101, (2012)
    32. A. E. Akosman, M. Mutlu, H. Kurt and E. Ozbay, "Dual-frequency division de-multiplexer based on cascaded photonic crystal waveguides," Physica B-Condensed Matter, 20,407, P4043-4047, (2012)
    33. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long and M. R. Querry, "Optical-Properties of 14 Metals in the Infrared and Far Infrared - Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied Optics, 24,24, P4493-4499, (1985)
    34. M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, Cambridge, UK, 1999)
    35. S. Vassant, J. P. Hugonin, F. Marquier and J. J. Greffet, "Berreman mode and epsilon near zero mode," Optics Express, 21,20, P23971-23977, (2012)

    下載圖示 校內:2017-08-29公開
    校外:2017-08-29公開
    QR CODE