簡易檢索 / 詳目顯示

研究生: 郎浩然
Lang, Hao-Jan
論文名稱: 氧化鋁模板輔助電鍍沉積類單晶銅銦硒奈米柱
Mono-like copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: 陽極氧化鋁銅銦硒太陽能電池類單晶奈米柱
外文關鍵詞: AAO, CuInSe2, nanowire arrays
相關次數: 點閱:111下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用陽極氧化鋁模板輔助,進行電鍍沉積銅銦硒CulnSe2奈米柱材料,運用於薄膜太陽能電池之吸收層,相較於一般平面薄膜,本研究使CulnSe2材料成長為一維奈米柱結構,可使光吸收提升,並有助於元件效率提升。
    模板的製備為使用鋁片在草酸中進行9小時之陽極氧化,製備陽極氧化鋁厚度約為27μm、孔洞半徑為40nm,再利用磷酸進行擴孔與阻擋層蝕刻,使孔洞開孔並擴孔至80nm。
    針對電鍍沉積材料參數探討其填孔狀況與沉積品質,在最佳參數45oC下進行電化學沉積,並在電鍍液PH值參數中,以PH1.7為最佳,並可使材料由缺陷態較多之CIS(204/220)轉為理想CIS(112)晶相成長,材料沉積完後進行退火製程,克服了退火應力使試片破裂致之問題,順利的使材料晶相大幅提升,總結上述實驗成果,其銅銦硒奈米柱之CIS(112)材料品質FWHM(112)為0.369,晶粒大小為24.07nm,符合理想化學劑量比1:1:2,並由TEM分析出為類單晶結構。

    We successfully fabricated ternary CuInSe2 nanowire arrays in a high temperature electrolyte using pulse electrodeposition techniques with the assistance of an anodized aluminum oxide (AAO) template. We investigated the effects of PH and annealing process on the composition and mono-like of CuInSe2 nanowires.
    We obtained the mono-like of CuInSe2 nanowires by tuning the deposition temperature 45oC, PH1.7 and annealing temperature 550oC. The detailed microstructure of CuInSe2 nanowires were obtained from the transmission electron microscopy (TEM) analysis, which shows the mono-like of CuInSe2 nanowires regardless of the PH. Proposed mechanism for the growth mechanism of nanowires deposited in the electrolyte with high temperature was presented on the basis of kinetic and thermodynamic process. IV measurement showed that the CuInSe2 nanowires and Ag was a schottky contact.

    目錄 摘要...............i Abstract.............ii 致謝.............vi 目錄..............viii 表目錄............xi 圖目錄............xii 第一章 緒論..........1 1.1 研究背景.............1 1.2 太陽能電池簡介...........2 1.2.1銅銦硒陣列奈米柱太陽能電池........3 1.3陣列試奈米柱.............4 1.3.1銅銦硒陣列式奈米柱太陽能電池......5 1.3.2氧化鋁模板..............6 1.3.3氧化鋁模板製作.............7 1.3.4奈米柱沉積............9 1.4研究動機..............10 第二章 理論基礎.........11 2.1陽極氧化鋁.............11 2.1.1電化學拋光法..........12 2.1.2陽極氧化反應............13 2.1.3多孔氧化鋁生成機制...........14 2.2電鍍奈米柱.............17 2.2.1奈米柱成長機制............17 2.2.2添加劑DMSO................19 2.2.3電鍍液溫度之影響...........21 第三章 實驗方法與量測儀器介紹........22 3.1實驗流程..............22 3.1.1鋁基板前置處理..........23 3.1.2模板製備...........23 3.1.3電鍍銅銦硒奈米柱.........33 3.1.4退火製程.............34 3.1.5模板蝕刻及後續處理.........34 3.2實驗藥品與材料............35 3.2.1 模板製備藥品.........35 3.2.2沉積CuInSe2藥品.........35 3.3實驗參數設定............36 3.3.1模板前置處理.........36 3.3.2模板製備參數.........36 3.3.3銅銦硒電鍍液參數.........37 3.3.4銅銦硒電鍍溫度參數.........37 3.3.5回火參數............38 3.3.6模板蝕刻參數............38 3.3.7氫化鉀處理參數..........38 3.4量測儀器介紹.............39 3.4.1場發射掃描式電子顯微鏡(FE-SEM) ......39 3.4.2能量分析光譜儀(EDX) .........39 3.4.3 X光繞射儀(XRD) .........40 3.4.4穿透式電子顯微鏡(TEM) .........42 3.4.5紫外光-可見光光譜儀(UV-VIS) ........45 第四章 結果與討論..........46 4.1電鍍液溫度調變............47 4.1.1沉積形貌............48 4.1.2二次相問題...........51 4.1.3化學元素組成分析........53 4.1.4晶相品質探討............54 4.1.5成長機制............55 4.2回火製程...........57 4.2.1試片處理...........57 4.2.2模板蝕刻...........59 4.2.3晶相品質改善...........61 4.2.4化學元素組成比.............63 4.3電鍍液PH值調變..........64 4.3.1晶相品質探討..........66 4.3.2單根奈米柱成長品質(TEM) ...........67 4.3.3化學元素組成比.........71 4.4 電性量測............73 4.4.1金屬接觸............74 4.4.2 UV-VIS量測.........76 第五章 結論...........77 參考文獻............79 表目錄 表1-1 太陽能電池種類與特性................2 表3-1 電化學拋光實驗參數.........25 表3-2 模板製作藥品............35 表3-3 沉積CulnSe2藥品..........35 表3-4 模板前置處理.............36 表3-5 模板製備參數............36 表3-6 CulnSe2電鍍液參數..........37 表3-7 退火參數................37 表3-8 模板蝕刻參數.............38 表3-9 氫化鉀處理參數..........38 表4-1 CulnSe2電鍍藥品參數..........47 表4-2 CulnSe2電鍍溫度與成長速率.......48 表4-3 電鍍溫度對化學劑量比影響........53 表4-4 溫度影響結晶品質分析.........55 表4-5 退火製程參數設定.........57 表4-6 模板蝕刻參數設定.........59 表4-7 CIS(204/220)晶相晶粒大小.........62 表4-8 CIS(112)晶相晶粒大小..........62 表4-9 退火前化學元素組成比.........63 表4-10 退火後化學元素組成比...........63 表4-11 鍍CulnSe2奈米柱PH調變參數設定.........65 表4-12 電鍍CulnSe2奈米柱PH調變參數設定.......65 表4-13 電鍍液PH值調變CIS(112)晶相晶粒大小......66 表4-14 電鍍液PH=1.5 電鍍參數設定.........67 表4-15 電鍍液PH=1.7 電鍍參數設定.........68 表4-16 電鍍液PH=2.1 電鍍參數設定.........69 表4-17最佳參數CulnSe2奈米柱沉積參數........74 圖目錄 圖1-1 未來能源發展趨勢圖...........1 圖1-2 陣列式奈米柱...........5 圖1-3 少載載子傳輸優勢...........6 圖1-4 兩階段陽極氧化製備多孔氧化鋁........7 圖1-5 奈米柱沉積流程圖...........8 圖2-1 陽極氧化鋁結構...........11 圖2-2 電化學拋光示意圖.........12 圖2-3 孔洞結構剖面及頂端.............13 圖2-4 孔洞生成初期示意圖...........15 圖2-5 孔洞生成時間對電流密度作圖.........16 圖2-6 動力學機制............18 圖2-7 熱力學機制............18 圖2-8 DMSO分子結構式...........19 圖2-9 DMOS之作用...........20 圖2-10 溫對對奈米線成長之影響........21 圖3-1 鋁基板表面粗糙度的影響示意圖........24 圖3-2 SEM圖未經電化學拋光之鋁片..........24 圖3-3 未經拋光之鋁會表面粗造度不理想........25 圖3-4 電化學拋光實驗參數 10V for 90s........26 圖3-5 電化學拋光實驗參數 20V for 90s........26 圖3-6 電化學拋光實驗參數 30V for 90s........26 圖3-7 粗糙度統計圖電化學拋光實驗參數30V for 90s....27 圖3-8 經過電化學拋光後對模板沉積之影響......28 圖3-9 陽極氧化反應實驗示意圖..........29 圖3-10 陽極氧化鋁模板剖面SEM,厚度約27μm......30 圖3-11 懸掛式擴孔...........30 圖3-12 模板擴孔前後示意圖..........30 圖3-13 鋁基板蝕刻前後示意圖..........31 圖3-14 蒸鍍工作電極Au前後示意圖..........31 圖3-15 Barrier layer 蝕刻前後示意圖..........32 圖3-16 脈充電位ton電壓為-1V,toff為0V,工作周期為33%......33 圖3-17 模板蝕刻前後示意圖..........34 圖3-18 光譜儀量測示意圖 (上)量測全穿透率 (下)量測擴散穿透率...45 圖3-19 入射光經過薄膜介面產生光散射之示意圖......45 圖4-1 電鍍CuInSe2 電鍍環境溫度差異SEM圖(a)-1°c剖面(b)頂部(c)7°c 剖面(d)頂部(e)17°c剖面(f)頂部...........49 圖4-2 電鍍CuInSe2 電鍍環境溫度差異SEM圖(a)25°c剖面(b)頂部 (c)45°c剖面(d)頂部..............50 圖4-3剖面SEM圖,低溫電鍍CuInSe2時,發生許多不連續塊狀產物.51 圖4-4電鍍CuInSe2 KCN對二次相之影響(a)低溫7°c,無經過KCN製程 (b) 低溫7°c,KCN 90s (c)低溫7°c,KCN 120s (d)高溫45°c,無經 過KCN製程(e)高溫45°c,KCN 90s (f)高溫45°c,KCN 120s....52 圖4-5 EDX 材料分析,電鍍溫度影響........53 圖4-6溫度-1,7,17,RT,45製程參數變化XRD分析,CulnSe2奈米柱使用導 電銀膠黏貼於玻璃基板上...........54 圖4-7動力學成核機制............56 圖4-8熱力學成核機制............56 圖4-9奈米柱經過退火後柱子受應力而彎曲.......57 圖4-10奈米柱成長於AAO模板中,直接進行退火.....58 圖4-11試片處理,CIS奈米柱與AAO用導電銀膠黏於玻璃基板..58 圖4-12模板蝕刻參數SEM圖 (a)氫氧化鈉20min(b) 氫氧化鈉40mim (c) 氫氧化鉀20mim (d)磷酸90min (E)磷酸120min 與(f)高倍率拍攝圖...60 圖4-13退火參數non,250,350,450,550℃調變XRD分析, CulnSe2奈米柱使用導電銀膠黏貼於玻璃基板上........61 圖4-14退火溫度與晶粒大小關係..........62 圖4-15電鍍液PH值1.5,1.7,1.9,2.1調變XRD分析, CulnSe2奈米柱使用導電銀膠黏貼於玻璃基板上....................66 圖4-16 FIB試片切割後剖面SEM圖.......67 圖4-17 TEM分析PH1.5(a)剖面奈米柱形貌(b)單根奈米柱高解析TEM(c)選區繞射圖..............68 圖4-18 TEM分析電鍍液參數PH1.7(a)剖面奈米柱形貌(b)單根奈米柱高解析TEM(c)選區繞射圖..........69 圖4-19 TEM分析電鍍液參數PH2.1(a)剖面奈米柱形貌(b)單根奈米柱高解析TEM(c)選區繞射圖..........70 圖4-20 CulnSe2電鍍液參數PH1.5 EDX分析..........71 圖4-21 CulnSe2電鍍液參數PH1.7 EDX分析..........72 圖4-22單根奈米線不同點化學劑量比,CulnSe2電鍍液參數(a)PH1.5(b)ph1.7............72 圖4-23電性量測 (a)結構 (b)IV量測迴路示意圖......73 圖4-24最佳參數CulnSe2奈米柱之Ag past/Au/CIS NW/Pt 歐姆接觸IV量測................74 圖4-25最佳參數CulnSe2奈米柱之Ag past/Au/CIS NW/Pt 蕭基接觸IV量測..................75 圖4-26最佳參數CulnSe2奈米柱之光穿透率量測.......76 圖4-27光穿透率量測CuInSe2奈米柱示意圖.......76 圖5-1 XRD分析實驗成果與過往研究比較......78

    [1] 楊德仁,太陽能電池材料,(2009)。

    [2] L.L. Kazmerski, F.R. White, G. K. Morgan , “Thin film CuInSe2/CdS heterojunction solar cells”, Applied Physics Letters, Vol.29(4), pp.268-270,(1976).

    [3] P. Jackson , D. Hariskos , E.Lotter ,S. Paetel , R. Wuerz , R. Menner , W. Wischman , M. Powalla , Research and Applications ,Vol.19(7), pp. 894-897,(2011).

    [4] Joshua M. Spurgeon, Harry A. Atwater, and Nathan S. Lewis J. Phys. Chem. Vol.112, pp. 6186-6193, (2008).

    [5] L. Chen, C.T. Kuo, T.G. Tsai, B.W. Wu, C.C. Hsu and F.M. Pan, “ Self-organized Titanium Oxide Nanodot Arrays by Electrochemical A nodization”, Appl. Phys. Lett, Vol.82, pp.2796-2798, (2003).

    [6] L. Chen, C. T. Kuo, F. M. Pan and T. G. Tsai, “Electrochemical preparation and crystallization of highly ordered TiO2 nanodot arrays on sapphire substrates”, Appl. Phys. Lett, Vol.84, pp.3888-3890, (2004).

    [7] Chen, J.-K. Chang, C.-T. Kuo, and F.-M. Pan, “Anodic aluminum oxide template assisted growth of vertically aligned carbon nanotube arrays by ECR-CVD”, Diamond Rel. Mater. Vol.13, pp.1949-1953, (2004)

    [8] P. L. Chen, J. K. Chang, F.M. Pan, C.T. Kuo, “Tube number density control of carbon nanotubes on anodic aluminum oxide template”, Diamond Rel. Mater. Vol.14, pp.804-809, (2005)

    [9] Zhang X. Y., Zhang L. D., Meng G. W., Li. G. H, Jin-Phillipp N. Y, Phillipp F, 2001, “Synthesis of Ordered Single Crystal Silicon Nanowire Arrays”, Adv. Mater. Vol.13, pp.1238-1241, (2001)

    [10] “金屬氧化物奈米模板製備及其應用簡介”,工業材料雜誌,185期,(2002)。

    [11] 劉志毅,“長程有序氧化鋁奈米孔洞陣列之製造與機制”,國立台灣大學物理研究所博士論文,(2003)。

    [12] Sangwoo Shin, a Beom Seok Kim, Kyung Min Kim, Bo Hyun Kong, Hyung Koun Chob and Hyung Hee Cho, “Tuning the morphology of copper nanowires by controlling the growth processes in electrodeposition”, J. Mater. Chem, Vol.21, pp.17967, (2011).

    [13] Humberto Gomez & Gonzalo Riveros, Daniel Ramirez & Rodrigo Henriquez, Ricardo Schrebler, Ricardo Marotti, Enrique Dalchiele, “Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution, J Solid State Electrochem”, Vol.16, pp.197–204, (2012).

    [14] A. Kampmann, J. Rechid, R. Reineke-Koch, “Large area
    electrodeposition of Cu(In,Ga)Se2”, Thin Solid Films, vol.361-362, pp.309-313, (2000).

    [15] Naglaa Fathy, R.K., Masaya Ichimura, “Preparation of ZnS thin films by the pulsed electrochemical deposition”, Materials Science and Engineering , Vol.107 , pp.271-276, (2004).

    [16] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料學
    會,p.169,(1996)。

    [17] 莊達人,VLSI製造技術,高立圖書股份有限公司,(1995)。

    [18] M.A. Martinez, J. Herrero, M.T. Gutierrez, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells”,
    Sol. Energy Mater, Sol. Cells, Vol.45, pp.75, (1997)

    [19] Emil A. Hernandez-Pag an, Wei Wang, and Thomas E. Mallouk , “Template Electrodeposition of Single-Phase p- and n-Type Copper Indium Diselenide (CuInSe2) Nanowire Arrays”, ACS Nano, Vol.5, NO. 4, pp.3237–3241, (2011)

    [20] 林琮皓,“利用陽極氧化鋁模板製作銅銦硒陣列式奈米柱”,國立成功大學微電子研究所碩士論文。

    [21] Pin-Kun Hung, Tsung-Hau Lin, and Mau-Phon Houng, “Journal of Characteristics of CuInSe2 nanowire arrays electrodeposited into anodic alumina templates with dimethyl sulfoxide (DMSO) additive”, The Electrochemical Society, Vol.161, pp.79-86, (2014).

    [23] Terry T. Xu, Richard D. Piner, and Rodney S, “An improved method to strip aluminum from porous anodic alumina films”, Ruoff, Langmuir, Vol.19, pp.1443-1445, (2003).

    [24] Catherine Y. Han, Gerold A. Willing, Zhili Xiao, and H. Hau Wang, “Control of the Anodic Aluminum Oxide Barrier Layer Opening Process by Wet Chemical Etching”, Langmuir, Vol.23, pp.1564-1568, (2007).

    [25] A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, “Fabrication of highly ordered metallic nanowire arrays by electrodeposition”, Appl. Phys. Lett, Vol.79, pp.1039, (2001).

    [26] Z.F. Zhou, Y.C. Zhou , Y. Pan, X.G. “Wang, Growth of the nickel nanorod arrays fabricated using electrochemical deposition on anodized Al templates”, Materials Letters, Vol.62, pp.3419–3421, (2008).

    [27] M. T. Wu, I. C. Leu, and M. H. Hon, J. Vac. Sci. “Growth characteristics of oxide during prolonged anodization of aluminum in preparing ordered nanopore arrays”, Technol. B Vol.22, pp.2326, (2004).

    [28] Guo-Dung Chen and lCheng-Yang Liu, “The effect of voltage and diameter of anodic porous alumina in acid solutions”, IEEE, Vol.18-21, pp.125 - 128 (2009).

    [29] Kristina Pitzschel, Julien Bachmann, Stephan Martens, Josep M. Montero-Moreno, Judith Kimling, Guido Meier, Juan Escrig, Kornelius Nielsch, and Detlef Görlitz , “Magnetic reversal of cylindrical nickel nanowires with modulated diameters”, JOURNAL OF APPLIED PHYSICS, Vol109 pp.033907, (2011).

    [30] Srikrishna Chanakya Bodepudi, Daniel Bachman, Sandipan Pramanik, “Fabrication of Highly Ordered Cylindrical Nanopores with Modulated Diameter Using Anodic Alumina”, IEEE, Vol.8-10, pp.1-4, (2011).

    [31] Chen-Un Yu , Chi-Chang Hu , Allen Bai , Yong-Feng Yang, “Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design”, Surface and Coatings Technology, Vol.201, pp.7259–7265, (2007).

    [32] Di Ma, Shuying Li , Chenghao Liang, “Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions”, Corrosion Science, Vol.51, pp.713–718, (2009).

    [33] J.H. Yuan, W. Chen, R.J. Hui, Y.L. Hu, X.H. Xia, “Mechanism of one-step voltage pulse detachment of porous anodic alumina membranes”, Electrochimica Acta, Vol.51, pp.4589–4595, (2006).

    [34] Genaro A. Gelves, Zakari T. M. Murakami, Matthew J. Krantz and Joel A. Haber, “Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates”, J. Mater. Chem., Vol.16, pp.3075–3083, (2006).

    [35] Liang Shi,Congjian Pei and Quan Li, “Fabrication of ordered single-crystalline CuInSe2 nanowire arrays”, The Royal Society of Chemistry, Vol12, pp.3882–3885, (2010).

    [36] Ming Li, Maojun Zheng, Tao Zhou, Changli Li, Li Ma and Wenzhong Shen, Li et al. “Fabrication and centeracterization of ordered Culn(1−x) Ga x Se2 nanopore films via template-based electrodeposition”, Nanoscale Research Letters, Vol.7, pp.675, (2012).

    [37] Liang Shi and Quan Li, “Synthesis and formation mechanism of helical single-crystalline CuInSe2 nanowires”, The Royal Society of Chemistry, Vol.13, pp.7262, (2011).

    [38] Liang Shi, Congjian Pei, Yeming Xu, and Quan Li, “Template-Directed Synthesis of Ordered Single-Crystalline Nanowires Arrays of Cu2ZnSnS4 and Cu2ZnSnSe4”, J. Am. Chem, Vol.133,pp. 10328–10331, (2011).

    [39] M. S. Sander, R. Gronsky, T. Sands, and A. M. Stacy, “Structure of Bismuth Telluride Nanowire Arrays Fabricated by Electrodeposition into Porous Anodic Alumina Templates”, Chem. Mater, Vol.15, pp.335-339, (2003).

    [40] Kyungtae Kim, Moonjung Kim, Sung M. Cho, “Pulsed electrodeposition of palladium nanowire arrays using AAO template”, Materials Chemistry and Physics, Vol.96, pp.278–282, (2006).

    [41] Sangwoo Shin, Bo Hyun Kong, Beom Seok Kim, Kyung Min Kim, Hyung Koun Cho and Hyung Hee Cho, Shin et al, “Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition”, Nanoscale Research Letters, Vol.6, pp.467, (2011).

    [42] Y. F. Hsu, A. B. Djurišić, and W. K. Chan, “Electrochemical Synthesis of ZnO Nanoporous Films at Low Temperature and Their Application in Dye-Sensitized Solar Cells”, Journal of The Electrochemical Society, Vol155, pp.D595-598, (2008).

    [43] Mingliang Tian, Jinguo Wang,† James Kurtz, Thomas E. “Mallouk, and M. H. W. Chan, Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism”, Nano Lett, Vol.3(7), pp.919-923, (2003).

    [44] Sovannary Phok, Suresh Rajaputra and Vijay P Singh, “Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates”, Nanotechnology, Vol.18, pp. 475601, (2007).

    下載圖示 校內:2020-07-22公開
    校外:2020-07-22公開
    QR CODE