| 研究生: |
鄭壽昌 Cheng, Shou-Chang |
|---|---|
| 論文名稱: |
錫-鋅-銀-鋁無鉛銲錫的機械、潤濕及時效性之研究 Investigations on Mechanical Properties, Wettability and Aging of Sn-Zn-Ag-Al Lead-Free Solders |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 顯微結構 、機械性質 、潤濕性質 |
| 外文關鍵詞: | wettability, microstructure, mechanical property |
| 相關次數: | 點閱:92 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在於探討Sn-Zn系銲錫合金,包括Sn-Zn共晶、Sn-Zn-1Ag及Sn-Zn-1Ag-XAl(X=0.01~0.45wt%)等合金的顯微結構、機械性質、潤濕性質以及時效下的固態界面反應等。
顯微結構分析研究結果顯示,添加1wt%銀至Sn-9Zn合金會形成少數的針狀富鋅相、樹枝狀的ε-AgZn3化合物和基地的亞共晶錫鋅組織,且使得基地形成較粗大的Sn-Zn共晶組織和β-Sn相。添加鋁於Sn-Zn-1Ag合金中,則形成AgZn3化合物、富鋅相、富鋁相析出物以及基地的亞共晶相。添加鋁會改進其降伏應力(0.2% offset yield stress)、維氏硬度、最大拉伸應力(UTS)以及拉伸應變。Sn-Zn-1Ag-XAl合金的鋁含量由0.01增加至0.45wt%,則其降伏應力由49.9增加到54.0MPa(Sn-9Zn合金為 47.6MPa),維氏硬度為由17.0增加至18.3Hv(Sn-9Zn合金為16.8Hv)。Sn-Zn-1Ag-XAl 合金(X=0.01、0.1、0.25以及0.45wt%)的最大拉伸應力分別為55、58、55以及60 MPa,同時其拉伸應變分別為47%、52%、58%以及45%(Sn-9Zn合金分別為52 MPa和50%)。
在熱差分析、潤濕性質及銲錫合金/銅的界面反應等的實驗結果顯示,Sn-Zn-1Ag-XAl銲錫合金偏離Sn-9Zn銲錫合金的溫度,其固-液共存區為7~10°C,而其固、液相線溫度分別為197~198°C及205~207°C。添加鋁元素有助於Sn-Zn-1Ag-XAl合金對銅線的潤濕性質,以氯化二甲基胺(DMAHCl)為助熔劑而言,其最大潤濕力與潤濕時間分別為0.78~1.18 mN與1.0~1.1秒。
在高溫時效的固態界面反應分析,實驗結果顯示,Sn-9Zn/Cu試片,在150 °C經時效1000小時後,其界面產生Kirkendall孔洞及裂痕。界面之介金屬化合物分別為富銅相、Cu3(Zn,Sn)相和Cu6(Sn, Zn)5相等化合物。Sn-Zn-1Ag/Cu試片,經時效1700小時後,得到界面之介金屬化合物分別為Cu3(Sn,Zn)相和Cu6(Sn,Zn)5相,其界面亦會產生Kirkendall孔洞及裂痕。Sn-Zn-1Ag-0.1~0.45Al/Cu試片,經時效1000小時後,其界面亦產生Kirkendall孔洞及裂痕。經由EDS成份分析,界面之介金屬化合物分別為接近銅線的富銅相、其次為Cu3(Zn,Sn)相和接近銲錫合金的Cu6(Sn,Zn)5相等化合物。Sn-Zn-1Ag-0.01Al/Cu試片,經時效3000小時後,其界面仍無裂痕產生,其界面產生之介金屬化合物亦為Cu3(Sn,Zn)相和Cu6(Sn,Zn)5相。
The microstructure, mechanical property, wettability and interfacial reaction of Sn-Zn system lead-free solders including eutectic Sn-9Zn, Sn-Zn-1Ag, and Sn-Zn-1Ag-XAl (X=0.01~0.45wt%) were investigated.
Microstructure of Sn-Zn-1Ag shows needle-like Zn-rich phase, dendrite ε-AgZn3 compound and hypo-eutectic phase in matrix, then the Sn-Zn eutectic structure and β-Sn phase. Those of the Sn-Zn-1Ag-XAl solder alloys consist of AgZn3 compound, Zn-rich phase, Al-rich segregation and hypo-eutectic phase. The addition of Al dramatically improves the 0.2% offset yield stress, Vicker's hardness, ultimate tensile stress, and total tensile strain of the Sn-Zn-1Ag-XAl alloys. The increase in Al content of Sn-Zn-1Ag-XAl alloy from 0.01 to 0.45wt% increases the yield stress from 49.9 to 54.0MPa (~ 47.6MPa for eutectic Sn-9Zn) and the Vicker's hardness values from 17.0 to 18.3Hv (~16.8Hv for eutectic Sn-9Zn). The UTS of Sn-Zn-1Ag-XAl alloys with X=0.01, 0.1, 0.25, and 0.45wt% Al, are respectively 55, 58, 55, and 60 MPa, while the tensile strains are respectively 47%, 52%, 58%, and 45% (52MPa and 50% for eutectic Sn-9Zn). Fracture mechanisms of the Sn-Zn-1Ag-XAl alloys are correlated with the existence of Zn-rich phase and Al segregation.
The wetting behaviors between the Sn-Zn-1Ag-XAl alloys and Cu have been investigated with the wetting balance method. The results of DSC analysis indicate that the solders exhibit a solid-liquid coexisting range of about 7~10°C. The solidus temperature of the Sn-Zn-1Ag-XAl alloys are within 197~198°C, while the liquidus temperature are within 205~207°C. The experimental results showed that the wettability of the Sn-Zn-1Ag-XAl alloys is improved by the addition of Al. The maximum wetting force of the alloys with Cu is within 0.75~1.18mN and the wetting time is around 1.0~1.1 seconds, better than those of eutectic Sn-9Zn and Sn-Zn-1Ag alloys. The addition of Al also depresses the formation ofε-AgZn3 compound at the interface between Sn-Zn-1Ag-XAl and Cu.
For interfacial reaction after aging, the experimental results showed that the interface between Sn-9Zn and Cu resulted in voids and crack when aged at 150°C for 1000 hours. The Cu-rich/ Cu3(Zn,Sn)/Cu6(Sn,Zn)5 IMC layer was observed at the interface. When aged for 1700 hours, the Cu3(Zn,Sn)/Cu6(Sn,Zn)5 layer was also been detected and the Kirkendall voids and crack was observed at the interface between Sn-Zn-1Ag and Cu. Cracks formed upon extending aging for 1000 hours at the solder/IMC interface or within IMC layer for the following solders: Sn-9Zn, Sn-Zn-1Ag, Sn-Zn-1Ag-0.1Al, Sn-Zn-1Ag-0.25Al, and Sn-Zn-1Ag-0.45Al. The Sn-Zn-1Ag-0.01Al/Cu couple exhibited no crack up to aging time of 3000 hours. The Cu3(Zn,Sn)/Cu6(Sn,Zn)5 layer was also formed at the interface between Sn-Zn-1Ag-XAl and Cu.
1. R.R. Tummala, Fundamentals of Microsystems Packaging, McGRAW -HILL, Chap.21, p.856 (2001).
2. J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic
assembly”, Int. Mater. Rev., Vol.40, p.65 (1995).
3. M. McCormack, and S. Jin, “New Lead-free Sn-Zn-In solder alloys“, J. Electron. Mater., Vol.23, p.687 (1994).
4.游善溥,“錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究”,博士論文,成功大學材料科學及工程學系,第一章,第8頁,(2000)。
5. M. McCormack, and S. Jin, “New, Lead-free solders”, J. Electron.
Mater., Vol.23, p.635 (1994).
6. H. Mavoori, J.Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine, “Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders”, J. Electron. Mater., Vol.26, p.783 (1997).
7. W.J. Plumbridge, “Review solders in electronics”, J. Mater. Sci. Vol.31, p.2501 (1996).
8. J. Glazer, “Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: areview”, J. Electron. Mater.
Vol.23, p.693 (1994).
9. R.R. Tummala, “Fundamentals of Microsystems Packaging”, McGRAW -HILL, Chap.18, 2001, pp.735-740.
10. R.R. Tummala, “Fundamentals of Microsystems Packaging”, Mc- GRAW -HILL, Chap. 21, 2001, pp. 860-865.
11. E. Bradley, III, and J. Hranisavljevic, “Characterization of the melting and wetting of Sn-Ag-X solders”, IEEE, Electron. Comp. Tech. Conference, p.1443 (2000).
12. S.W. Yoon, W.K. Choi, and H.M. Lee, “Calculation of surface tension and wetting properties of Sn-based solder alloys“, Script. Mater., Vol.40, p.297 (1999).
13. M.A. Jimarez, T. Son, C.C. Le; G.O. Dearing, “Evolution of a unique flip-chip MCM-L package”, Adv. Packaging, IEEE Trans. Comp. Pack. Manu. Tech., Vol.22, p.372 (1999).
14. U.B. Kang, and Y.H. Kim, “Electrical properties of ultrasmall low temperature solder joints for LCD drive IC packaging applications”, IEEE CMPT, Int’l symp. on Electron. Mat. Packag., Taiwan, Kaosiung, Dec. (2002).
15. “Soldering Manual”, American Welding Society, Inc., Miami, Florida 33125, 2nd revised ed., pp.134-135 (1978).
16. “Soldering Manual”, American Welding Society, Inc., Miami, Florida 33125, 2nd revised ed., pp.10-11 (1978).
17. I. Dutta, “A constitutive model for creep of Lead-free solders undergoing strain enhanced microstructural coarsening: a frist report”, J. Electron. Mater., vol.32, p.201(2003).
18. L. Rice, and A. Roberti, IBM Tech. Discl. Bull., Vol.26(11), p.6092 (1984).
19. Z. Mei, and J.M. Morris, Jr., “Superplastic creep of low melting point solder joints”, J. Electron. Mater. Vol. 1, p.401 (1992).
20. D.M. Jarboe, “Thermal fatigue evaluation of solder alloys”, NTIS, U.S. Dept. of Commerce, BDX-613-2341, Feb. (1980).
21. J. Seyyedi, J. Elec. Packag., Vol.115, p.305 (1993).
22. K.L. Lin, and Y.C. Wang, “Wetting interaction of Pb-Free Sn-Zn-Al solders on metal plated substrate”, J. Electron. Mater., Vol.27, p.1205 (1998).
23. K.L. Lin, F.C. Chung, and T.P. Liu, “The potentiodynamic polarization
behavior of Pb-free XIn-9(5Al-Zn)-YSn solders”, Mater. Chem. Phys.,
Vol.53, p.55 (1998).
24. R.R. Tummala, “Fundamentals of Microsystems Packaging”, Mc- GRAW -HILL, Chap.21, 2001, pp.840-850.
25. F.G. Yost, and E.J. O’Toole, “Metastable and equilibrium wetting states in the Bi-Sn system”, Acta Mater., Vol.46, p.5143 (1998).
26. M.A. Carroll and M.E. Warwick, “Surface tension of Sn-Pb alloys: part 1 effect of Bi, Sb, P, Ag, and Cu on 60Sn-40Pb solder”, Mater. Sci. Technol. Vol.3, p.1040 (1987).
27. K. Jung and H. Conrad, “Microstructure coarsening during static an-
nealing of 60Sn40Pb solder joints: I stereology”, J. Electron. Mater.,
Vol.30, p.1294 (2001).
28. K. Jung and H. Conrad, “Microstructure coarsening during static an- nealing of 60Sn40Pb solder joints: II eutectic coarsening kinetics”, J. Electron. Mater., Vol.30, p.1303 (2001).
29. K. Jung and H. Conrad, “Microstructure coarsening during static annealing of 60Sn-40Pb solder joints: III intermetallic compound growth kinetics”, J. Electron. Mater., Vol.30, p.1308 (2001).
30.游善溥,“錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究”,博士論文,成功大學材料科學及工程學系,第一章,第13頁,(2000)。
31. S. Ahat, M. Sheng, and L. Luo, “Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging”, J. Electron. Mater., Vol.30, p.1317 (2001).
32. S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, “Characteriz- ation of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging”, J. Electron. Mater., Vol.28, p.1209 (1999).
33. E.W. Hare, R. Corwin, and E.K. Rjemer, Pro. of ASM Intern. Electron. Packag. Mat. and Proc. Conf., Metals Park, OH, ASM International, p.32 (1986).
34. C.H. Reader, L.E. Felton, D.B. Knorr, G.B. Schmeelk, and D. Lee, Proc. Of IEEE-CHMT int. Electronics Manufactureing Technol. Symp., Santa Clara, CA, p.119 (1993).
35. C.Y. Huang, K. Srihari, A.J. McLenaghan, and G.R. Westby, “Flux activity evolution using the wetting balance”, IEEE/CPMT, Int’l Electron. Manufact. Tech. Symposium, p.344 (1995).
36. B. Nicholson and D. Bloomfield, Soldering & Surface Mount Tech- nology, Vol.10, p.23 (1992).
37. C.A. Mackay and W.D. Von Voss, “Effect of compositional changes and impurities on wetting properties of eutectic Sn-Bi alloy used as solder”, Mater. Sci. Technol., Vol.1, p.240(1985).
38. C. Melton, A. Skipor and J. Thome, Proc. of Conf. “NEPCON West”, Anaheim, CA, p.1489 (1993).
39. Y. Kariya, Y. Hirata, and M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints”, J. Electron. Mater., Vol.28, p.1263 (1999).
40. J. London and D.W. Ashall, Brazing Soldering, Vol.10(17-20), p.23 (1986).
41. S. Ahat, M. Shang, and L. Luo, “Effects of static thermal aging and thermal cycling on the microstructure and shear strength of Sn95.5Ag3.8- Cu0.7 solder joints”, J. Mater. Res., Vol. 6, p.2914 (2001).
42. H.E. Townsend, and J.C. Zoccola, “Atmospheric corrosion resistance of 55% Al-Zn coated sheet steel: 13 year test results”, Mat. Performance, Vol.18(10), p.13 (1979).
43. K.I. Chen, and K.L. Lin, “Effect of Gallium on wettability, micro- structures and mechanical properties of the Sn-Zn-Ag-Ga and Sn-Zn-Ag-Al-Ga solder alloys”, IEEE CMPT, Int’l Symp. on Electron. Mat. Packag., Taiwan, Kaosiung, Dec. (2002).
44. W.L. Winterbottom, “Converting to Lead-free solders: an automotive
industry perspective”, JOM, July, p.20 (1993).
45. R.J. Klein Wassink, “ Soldering in Electronic ” (Electrochemical pub- lications, Ayr ), p.83 (1984).
46. W.K. Choi, and H.M. Lee, “Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate”, J. Electron. Mater., Vol.28, p.1251 (1999).
47. W.J. Tomlinson, and N.J. Bryan, “The strength of brass/Sn-Pb-Sb solder joints containing 0 to 10% Sb”, J. Mater. Sci., Vol.21, p.103 (1986).
48. H. Tanaka, M. Tanimoto, A. Matsuda, T. Uno, M. Kurihara, S. Shiga, “Pb-free surface-finishing on electronic components’ terminals for Pb-free soldering assembly“, J. Electron. Mater., Vol.28, p.1216 (1999).
49. S. Jin, “Developing Lead-free solders: a challenge and opportunity”,
JOM, July, p.13 (1993).
50. F.A. Mohamed, and T.G. Langdon, “Creep behaviour in the super-plastic Pb-62%Sn eutectic”, Phil. Mag., Vol.32, p.697 (1975).
51. D. Tribula, J. Electron. Packag., Vol.112, p.87 (1990).
52. D. Tribula, D.Grivas, D. Frear, and J.W. Morris, Jr., J. Electron. Packag., Vol.111, p.83 (1989).
53. V.I. Igoshev, J.I. Kleiman, D. Shangguan, C. Lock, S. Wong, and M. Wiseman, “Microstructure changes in Sn-3.5Ag solder alloy during creep”, J. Electron. Mater., Vol.27, p.1367 (1998).
54. N. Wade, T. Akuzawa, S. Yamada, D. Sugiyama, I.S. Kim, and K. Miyahara, “Effect of microalloying on the creep strength and microstructure of an eutectic Sn-Pb solder alloy”, J. Electron. Mater., Vol.28, p.1286 (1999).
55. J.W. Morris, Jr., J. L. Freer Goldstein, and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solders”, JOM, July, p.25 (1993).
56. C.S. Huang, J.G. Duh, Y.M. Chen, and J.H. Wang, “Effects of Ni thickness and reflow times on interfacial reactions between Ni/Cu under-bump metallization and eutectic Sn-Pb solder in flip-chip technology”, J. Electron. Mater., Vol.32, p.89 (2003).
57. W. Yang, L.E Felton, and R.W. Messler, Jr., “The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints”, J. Electron. Mater., Vol.24, p.1465 (1995).
58. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low-cycle fatigue behavior and mechanisms of a Lead-free solder 96.5Sn/3.5Ag”, J. Electron. Mater., Vol.31, p.142 (2002).
59. K. Wu, N. Wade, J.Cui, and K. Miyahara, “Microstructural effect on the creep strength of a Sn-3.5%Ag solder alloy”, J. Electron. Mater., Vol.32, p.5 (2003).
60. J. Sigelko, S. Choi, K.N. Subramanian, J. P. Lucas, and T.R. Bieler, “Effect of cooling rate on microstructure and mechanical properties of eutectic Sn-Ag solder joints with and without intentionally incorporated Cu6Sn5 reinforcements”, J. Electron. Mater., Vol.28, p.1184 (1999).
61. V.I. Igoshev, and J.I. Kleiman, “Creep phenomena in Lead-free solders”, J. Electron. Mater., Vol.29, p.244 (2000).
62. M. McCormack, and S. Jin, “Progress in the design of new Lead-free
solder alloys”, JOM, July, p.36 (1993).
63. C. Melton, “The effect of reflow process variables on the wettability of Lead-free solders”, JOM, July, p.33 (1993).
64. D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, “Activation energies of intermetallic growth of Sn-Ag eutectic solder on Copper substrates”, J. Electron. Mater., Vol.26, p.883 (1997).
65. W. Yang, R.W. Messler, Jr., and L. E. Felton, “Microstructure evolution of eutectic Sn-Ag solder joints”, J. Electron. Mater., Vol.23, p.765 (1994).
66. P.T. Vianco, and J.A. Rejent, “properties of ternary Sn-Ag-Bi solder alloys: part II-wettability and mechanical properties analyses”, J. Electron. Mater., Vol.28, p.1138 (1999).
67. P.T. Vianco, and J.A. Rejent, “Properties of ternary Sn-Ag-Bi solder alloys: part I—thermal properties and microstructural analysis”, J. Electron. Mater., Vol.28, p.1127 (1999).
68. Y. Kariya, and M. Otsuka, “Effect of Bismuth on the isothermal fatigue properties of Sn-3.5mass%Ag solder alloy”, J. Electron. Mater., Vol.27, p.866 (1998).
69. C.M. Miller, I.E. Anderson, and J.F. Smith, “A viable Tin-Lead solder substitute: Sn-Ag-Cu”, J. Electron. Mater., Vol.23, p.595 (1994).
70. Y. Kariya, and M. Otsuka, “Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu and In) solder alloys”, J. Electron. Mater., Vol.27, p.1229 (1998).
71. G. Ghosh, “Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints”, Acta Mater., Vol.49, p.2609 (2001).
72. W.K. Choi, J.H. Kim, S.W. Teong, and H.M. Lee, “Interfacial microstructure and joint strength of Sn-3.5Ag-X (X = Cu, In, Ni) solder joint“, J. Mater. Res., Vol.17, p.43 (2002).
73. F. Guo, J.P. Lucas, and K.N. Subramanian, “Creep behavior in Cu and Ag particle-reinforced composite and eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu non-composite solder joints”, J. Mater. Sci.: Mater. Electron., Vol.12, p.27 (2001).
74. M. McCormack, S. Jin, G.W. Kammlott, and H.S. Chen, “New Pb-free solder alloy with superior mechanical properties”, Appl. Phys. Lett., Vol.63, p.15 (1993).
75. H.T. Lee, M.H. Chen, S.Y. Hu, and C. S. Li, “Inflence of Sb addition on microstructureal evolution of Sn-Ag solder”, IEEE CMPT, Int’l symp. on Electron. Mat. Packag., Taiwan, Kaosiung, Dec. (2002).
76. M. Ackroyd, et al., Metals Tech., Feb., P.73 (1975).
77. T.A. Powers, T.J. Singler, and J.A. Clum, “Role of Tin content in the wetting of Cu and Au by Tin-Bismuth solders”, J. Electron. Mater., Vol.23, p.773 (1994).
78. S. Pattanaik, and V. Raman, Proc. Mat. Dev. in Microelec. Packag. Conf.(Materials Park, OH: ASM Intl.) p.251 (1991).
79. W.J. Tomlinson, and I. Collier, “The mechanical properties and micro- structures of Copper and brass joints soldered with eutectic Tin- Bismuth solder”, J. Mater. Sci., Vol.22, p.1835 (1987).
80. L.E. Felton, C.H. Raeder, and D.B. Knorr, “The properties of Tin- Bismuth alloy solders”, JOM, July, p.28 (1993).
81. C.H. Reader, L.E. Felton, V.A. Tanzi, and D.B. Knorr, “The effect of aging on microstructure, room temperature deformation, and fracture of Sn-Bi/Cu solder joints”, J. Electron. Mater., Vol.23, p.611 (1994).
82. M. Yamashita, S. Tada, and K. Shlokawa, “Lead-Free Solder”, U.S.A. Patent no.6156132, Dec.5 (2000).
83. U.R. Kattner, and W.J. Boettinger, “On the Sn-Bi-Ag ternary phase diagram”, J. Electron. Mat., Vol.23, p.603 (1994).
84. C.K. Shin, Y.J. Baik, and J.Y. Huh, “Effects of microstructrual evol- ution and intermetallic layer growth on shear strength of ball-grid- array Sn-Cu solder joints”, J. Electron. Mat., Vol.30, p.1323 (2001).
85. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kao, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, “Morphology, kinetics, and thermo- dynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, J. Mater. Res., Vol.17, p.291 (2002).
86. W.T. Chen, C.E. Ho, C.R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders”, J. Mater. Res., Vol.17, p.263 (2002).
87. S.K. Kang, and A.K. Sarkhel, “Lead(Pb)-free solders for electronic packaging”, J. Electron. Mater., Vol.23, p.701 (1994)
88. Indium Corporation of America, Utica, NY13503.
89. J.L. Freer, and J.W. Morris, Jr., “Microstructure and creep of eutectic Indium/Tin on Copper and Nickel substrates”, J. Electron. Mater., Vol.21, p.647 (1992).
90. K.L. Lin, and C.J. Chen, “The interactions between In-Sn solders and an electroless Ni-P deposit upon heat treatment”, J. Mater. Sci.: Mater. Electron., Vol.7, p.397 (1996).
91. C.Y. Huang, and S.W. Chen, “Interfacial reactions in In-Sn/Ni couples and phase equilibria of the In-Sn-Ni system”, J. Electron. Mater., Vol. 31, p.152 (2002).
92. W.A. Baker, J. Inst. Metals, Vol.65, p.277 (1939).
93. W. Allen, and J. Perepezko, “Constitution of the Tin-Antimony system”, Scrip. Metall. Mater., Vol.24, p.2215 (1990).
94. R.K. Mahidhara, S.M.L. Sastry, I. Turlik, and K.L. Murty, “Deform- ation and fracture behavior of Sn-5%Sb solder”, Scrip. Metall. Mater., Vol.31, p.1145 (1994).
95. P.T. Vianco, K.L. Erickson, and P.L. Hopkins, “Solid state inter- metallic compound growth between Copper and high temperature, Tin-rich solders—part I: experimental analysis“, J. Electron. Mater., Vol.23, p.721 (1994).
96. G. Ghosh, M. Loomans, and M.E. Fine, “An investigation of phase equilibria of the Bi-Sb-Sn system”, J. Electron. Mater., Vol.23, p.619 (1994).
97. M. Yamashita, S. Tada, and K. Shlokawa, “Lead-Free Solder”, U. S.A. Patent no. 6179935-B1, Jan.30 (2001).
98. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L.M. Keer, and M.E. Fine, “Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders”, J. Electron. Mater., Vol.26, p.783 (1997).
99. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu”, J. Mater. Res. Vol.13, p.2859 (1998).
100. K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, “Heat resistance of Sn-9Zn solder/Cu interface with or without coating”, J. Mater. Res., Vol.15, p.884 (2000).
101. K.L. Lin, and C.L. Shih, “Wetting interaction between Sn-Zn-Ag solders and Cu”, J. Electron. Mater., Vol.32, p.95 (2002).
102. J.M. Song, G.F. Lan, T.S. Lui, and L.H. Chen, “Microstructural features and vibration fracture behavior of Sn-Zn-Ag solder alloys”, IEEE CMPT, Int’l Symp. on Electron. Mat. Packag., Taiwan, Kaosiung, Dec. (2002).
103. Z. Mei, and J.M. Morris, Jr., “Characterization of eutectic Sn-Bi solder joints”, J. Electron. Mater. Vol.21, p.599 (1992).
104. T.C. Chang, M.H. Hon, M.C. Wang, And D.Y. Lin, “Thermal fatigue resistance of the Sn-9Zn-xAg Lead-free solders/Cu interface”, IEEE CMPT, Int’l Symp. on Electron. Mat. Packag., Taiwan, Kaosiung, Dec. (2002).
105. K.L. Lin, L.H. Wen, and T.P. Liu, “The microstructures of the Sn-Zn-Al solder Alloys”, J. Electron. Mater., Vol.27, p.97 (1998).
106. K.L. Lin, and L.H. Wen, “The wetting of copper by Al–Zn–Sn solders”, J. Mater. Sci.: Mater. Electron., Vol.9, p.5 (1998).
107. H.E. Townsend, and C.F. Meitzner, “Corrosion resistance of Zinc/4% Aluminum and Zinc/7% Aluminum alloy coatings compared to Zinc and Zinc/54% Aluminum alloy coatings”, Mat. Performance, Vol.22(1), p.54 (1983).
108. K.L. Lin and T.P. Liu, “high temperature oxidation of a Sn-Zn-Al solder”, Oxid. Met., Vol.50(Nos.3/4), p.255 (1998).
109. S.P. Yu, M.H. Hon, and M.C. Wang, “The adhesion strength of a Lead-free solder hot-dipped on Copper substrate”, J. Electron. Mater., Vol.29, p.237 (2000).
110. C.M. Chuang, T.S. Lui, and L.H. Chen, “Effect of Aluminum addition on tensile properties of naturally aged Sn-9Zn eutectic solder”, J. Mater. Sci., Vol.37, p.191 (2002).
111. S.P. Yu, M.C. Wang, and M.H. Hon, “formation of intermetallic compounds at eutectic Sn-Zn-Al solder/Cu interface”, J. Mater. Res., Vol.16, p.76 (2001).
112. H. Mavoori, S. Vaynman, J. Chin, B. Moran, L.M. Keer, and M.E. Fine, "Mechanical Behavior of Eutectic Sn-Ag and Sn-Zn Solders", Mater. Res. Soc. Symp. Proc., Vol.390, p.161 (1995).
113. C.M. Chuang, T.S. Lui, and L.H. Chen, “The characteristics of vibra- tion fracture of Pb-Sn and Lead-free Sn-Zn eutectic solders”, J. Electron. Mater., Vol.30, p.1232 (2001).
114. J.P. Lucas, F. Guo, J. McDougall, T.R. Bieler, K.N. Subramanian, and J.K. Park, “Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique”, J. Electron. Mater., Vol.28, p.1270 (1999).
115. S.P. Yu, H.J. Lin, M.H. Hon, and M.C. Wang, “Effects of process parameters on the soldering behavior of the eutectic Sn-Zn solder on Cu substrate”, J. Mater. Sci.: Mater. Electron., Vol.29, p.461 (2000).
116. J. Foley, A. Gickler, F.H. Leprevost and D. Brown, “Analysis of ring and plug shear strengths for comparison of Lead-free solders”, J. Electron. Mater., Vol.29, p.1258 (2000).
117. M.E. Loomans, S. Vaynman, G. Ghosh and M.E. Fine, “Investigation of multi-component Lead-free solders”, J. Electron. Mater., Vol.23, p.741 (1994).
118. M.L. Huang, C.M.L. Wu, J.K.L. Lai, L. Wang, and F.G. Wang, ”Lead free solder alloys Sn-Zn and Sn-Sb prepared by mechanical alloying”, J. Mater. Sci.: Mater. Electron., Vol.11, p.57 (2000).
119. K.L. Lin, and L.H. Wen, “The wetting of Copper by Al-Zn-Sn solders”, J. Mater. Sci.: Mater. Electron., Vol.9, p.5 (1998).
120. K.L. Lin, and Y.C. Wang, “Wetting interaction of Pb-free Sn-Zn-Al solders on metal plated substrate”, J. Electron. Mater., Vol.27, p.1205 (1998).
121. S.P. Yu, H.C. Wang, M.H. Hon, and M.C. Wang, “Composition and heat-treatment effects on the adhesion strength of Sn-Zn-Al solders on Cu substrate”, JOM, Vol.52(June), p.36 (2000).
122. T.B. Massalski, J.L. Mmurray, L.H. Bennett, H. Baker, and L. Kacprzak, “Binary Alloy Phase Diagram, 2nd ed.”, (ASM, New York), p.167-168 (1987).
123. T.B. Massalski, J.L. Mmurray, L.H. Bennett, H. Baker, and L. Kacprzak, “Binary Alloy Phase Diagram, 2nd ed.”, (ASM, New York), p.184-186 (1987).
124. T.B. Massalski, J.L. Mmurray, L.H. Bennett, H. Baker, and L. Kacprzak, “Binary Alloy Phase Diagram, 2nd ed.”, (ASM, New York), p.3-4 (1987).
125. J.Y. Park, C.S. Kang, and J.P. Jung, “The analysis of the withdrawal force curve of the wetting curve using 63Sn-37Pb and 96.5Sn-3.5Ag eutectic solders”, J.Electron. Mater., Vol.28, p.1256 (1999).
126. S.W. Chen, and Y.W. Yen, “Interfacial reaction in Ag-Sn/Cu couples”, J. Electron. Mater., Vol.28, p.1203 (1999).
127. A.S. Zuruzi, C.-H. Chiu, S.K. Lahiri, and K.M. Chua, “Kinetics of Copper and high Pb/high Sn bilayered Pb-Sn solder interactions”, J. Electron. Mater., Vol.28, p.1224 (1999).
128. G. Ghosh, “Kinetics of interfacial reaction between eutectic Sn-Pb solder and Cu/Ni/Pd metallizations”, J. Electron. Mater., Vol.28, p.1238 (1999).
129. K.I. Chen, and K.L. Lin, “The microstructures and mechanical pro- perties of the Sn-Zn-Ag-Al-Ga solder alloys—the effect of Ag”, J. Electron. Mater., Vol.31, p.861 (2002).
130. Gordon W. Powell, Salah E. Mahmoud, and K. Mills edit., “Metals Handbook”, 9th Metals Park, (OHIO): ASM International, Vol.8, p.71-90 (1986).
131. 游善溥,“錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究”,博士論文,成功大學材料科學及工程學系,第一章,第29頁,(2000)。
132. J.Y. Park, J.P. Jung, and C.S. Kang, “The analysis of the withdrawal force curve of the wetting balance curve”, IEEE Trans. Comp. Packaging Technol., Vol.22, p.372 (1999).
133. K.L. Lin, and C.L. Shih, “Microstructure and thermal behavior of Sn-Zn-Ag solders”, J. Electron. Mater., Vol.32, p.1496 (2003).
134. K.L. Lin, L.H. Wen, and T.P. Liu, “The microstructures of the Sn-Zn-Al solder Alloys”, J. Electron. Mater., Vol.27, p.97 (1998).
135. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, Metal Park (OH), pp.115-121 (1973).
136. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, Metal Park (OH), pp.19-24 (1973).
137. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, Metal Park (OH), pp.103-111 (1973).
138. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, and L. Kacprzak, “Binary Alloy Phase Diagram, 2nd edn”, ASM International, New York, pp.2085-2086(1987).
139. G.W. Powell, S.E. Mahmoud, and K. Mills edit., “Metals Handbook”, 9th edn, Vol.8, Metals Park (OHIO): ASM International, pp.20-29 (1986).
140. G.W. Powell, S.E. Mahmoud, and K. Mills edit., “Metals Handbook”, 9th edn, Vol.12, Metals Park (OHIO): ASM International, pp.12-17 (1986).
141. 劉培基,“錫鋅系銲錫與銀基材之界面反應”,碩士論文,成功大學材料科學及工程學系,第三章,第56頁,(2004)。
142. 柯以侃編,儀器分析,”差式掃瞄熱量測定法”,文京圖書有限公司出版,第585頁至第592頁,(1997)。
143. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, and L. Kacprzak, “Binary Alloy Phase Diagram, 2nd edn”, ASM International, New York, pp.980-981 (1987).
144. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, and L. Kacprzak, “Binary Alloy Phase Diagram, 2nd edn”, ASM International, New York, p.98 (1987).
145. G.Y. Li, “Study of intermetallics formation in thick film solder joints”, Mater. Sci. Eng. B88, 47 (2002).
146. P.T. Vianco, and D.R. Frear, “Issues in the replacement of lead- bearing solders”, JOM, July, p.14 (1993).
147. K.N. Tu, T.Y. Lee, J.W. Jang, L. Li, D.R. Frear, K. Zeng, and J.K. Kivilahti, “Wetting reaction versus solid state aging of eutectic SnPb on Cu”, J. Appl. Phys., Vol.89, p.4843 (2001).
148. 劉培基,“錫鋅系銲錫與銀基材之界面反應”,碩士論文,成功大學材料科學及工程學系,第三章,第110頁至第111頁,(2004)。
149. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kao, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, “Morphology, kinetics, and thermo- dynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, J. Mater. Res., Vol.17, p.291 (2002).
150. S.W. Chen and Y.W. Yen, “Interfacial reactions in Ag-Sn/Cu couples”, J. Electron. Mater., Vol.28, p.1203 (1999).
151. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K.Kelley, “Selected Values of Thermodynamic Properties of Binary Alloys”, Metals Park, ASM International OH, pp.810-822 (1973).
152. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K.Kelley, “Selected Values of Thermodynamic Properties of Binary Alloys”, Metals Park, ASM International OH, pp. 1333-1336 (1973).
153. W. Yang, R.W. Messler, Jr., L.E Felton, “Microstructure evolution of eutectic Sn-Ag solder joints”, J. Electron. Mater., Vol.23, p.765 (1994).
154. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, and L. Kacprzak, “Binary Alloy Phase Diagram, 2nd edn”, ASM International, New York, p.85 (1987).
155. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, and L. Kacprzak, “Binary Alloy Phase Diagram, 2nd edn”, ASM International, New York, p.70 (1987).
156. C.H. Ma, and R.A. Swalin, Acta metall., Vol.8, p.388 (1960).
157. K.L. Lin, and H.M. Hsu, “Sn-Zn-Al Pb-free solder--an inherent barrier solder for Cu contact”, J. Electron. Mater., Vol.30, p.1068 (2001).