簡易檢索 / 詳目顯示

研究生: 王志凱
Wang, Jhih-Kai
論文名稱: 壓電式噴墨元件在超微量點膠製程之應用研究
Study of Micro Dispensing Technique by Piezoelectric Inkjet Device
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 噴墨製程點膠製程微液滴噴覆行為
外文關鍵詞: Piezoelectric Inkjet printing process, Dispensing process, Micro droplet
相關次數: 點閱:85下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用壓電噴墨元件開發超微量點膠技術,流體的轉移行為受到不同的參數所影響,包含脈衝波型,點膠製程高度以及潤濕性等。本研究使用甘油水溶做為工作流體以進行轉移製程開發,其中流體轉移過程中的行為,包括液體拉伸,液柱接觸到基板的過程以及殘留液體縮至點膠口內等複雜的形態,都藉由高速攝影機觀察。本研究亦採用Flow-3D®套裝軟體進行數值模擬並結合實驗結果進行驗證,針對不同點膠口與基板間距對轉移行為的影響進行探討。漿料與基板接觸面的潤濕性對轉移行為的影響亦被納入探討。
    由實驗結果可以發現,透過控制點膠口與基板的間距,可獲得小於點膠口直徑 (50 μm) 的膠點。特別的是若液柱長度為109 μm時將點膠口與基板間距控制在50-70 μm則直徑小於34 μm的膠點可輕易獲得。而潤濕性對流體轉移量在點膠製程間距小於70 μm時有顯著的影響,其結果顯示膠點大小隨潤濕性變差而降低。亦透過實驗設計在多次點膠實驗中發現,即使在最佳的潤濕條件下,若點膠製程間距低於28 μm的情況下將不會進行轉移。

    The dynamics of micro dot formation in a piezoelectric dispensing mechanism is presented in this study. Aqueous glycerol solution as test fluid is employed to conduct a new dispensing process. A dot diameter was small than orifice diameter of 50 μm by the liquid column extruding to 110 μm. The complex morphologies of fluid transfer behavior during dot formation, including stretching of liquid, liquid column contacting on the target and residue liquid contracted into dispenser, are observed by high speed camera. A minimum dot diameter of 21 μm could easily achieved by reducing the distance between orifice and substrate. Moreover, the mechanisms of piezoelectric dispensing will also be discussed in this study.

    中文摘要 I Extended abstract II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 符號 XIV 第一章 前言 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 點膠製程技術 2 1.2.1.1 接觸式點膠製程技術 2 1.2.1.2 非接觸式點膠製程技術 5 1.2.2 噴墨製程技術 5 1.2.2.1 微液滴行為 6 1.2.2.2 液滴撞擊行為 9 1.2.2.3 壓電噴墨技術之應用 11 1.3 研究目的 12 第二章 理論基礎 20 2.1 控制方程式 20 2.2 自由表面 21 2.3 邊界條件 22 2.3.1 自由表面邊界 22 2.3.2 固體邊牆邊界 23 2.3.3 對稱邊牆邊界 23 第三章 實驗方法 25 3.1 實驗步驟 25 3.1.1 壓電點膠設備 25 3.1.2 液柱觀測分析 27 3.1.3 實驗墨水 27 3.1.4 基板條件 28 3.2數值模擬系統設定 29 第四章 結果與討論 36 4.1 壓電點膠製程實驗結果 36 4.1.1 點膠轉移製程之液柱觀測 36 4.1.2 點膠口與基板間距對轉移行為之影響 37 4.2點膠製程技術模擬系統建立 41 4.2.1 液柱行為之模擬與實驗驗證 41 4.2.2 壓力波對液柱行為之分析 42 4.2.3液柱轉移行為之分析 43 4.2.4 潤濕性對轉移行為之分析 44 4.3 壓電點膠製程之限制 45 第五章 結論 64 參考文獻 65

    [1] A. Lewis, “Underfill Techniques: Automated Dispensing and Jetting”, Advanced Packaging, vol. 12, pp. 39-41, 2003.
    [2] L. Jianping and D. Guiling, “Technology Development and Basic Theory Study of Fluid Dispensing-a Review”, High Density Microsystem Design and Packaging and Component Failure Analysis, 2004. HDP'04. Proceeding of the Sixth IEEE CPMT Conference on, pp. 198-205, 2004.
    [3] X. B. Chen, G. Shoenau and W. J. Zhang, “Modeling of Time-Pressure Fluid Dispensing Processes”, Electronics Packaging Manufacturing, IEEE Transactions on, vol. 23, pp. 300-305, 2000.
    [4] X. B. Chen, W. J. Zhang, G. Schoenau and B. Surgenor, “Off-Line Control of Time-Pressure Dispensing Processes for Electronics Packaging”, Electronics Packaging Manufacturing, IEEE Transactions on, vol. 26, pp. 286-293, 2003.
    [5] A. Lewis, “Formulation Considerations for Automated Dispensing of Lead Free Solder Paste”, Proceedings of the 5th International Conference on Lead Free Electronics and Assemblies, pp. 1-10, 2004.
    [6] G. L. Deng, J. H. Xie and J. Zhong, “An Experimental System for the Mechanism Research of Contact Fluid Dispensing Dot”, High Density Microsystem Design and Packaging and Component Failure Analysis, 2004. HDP'04. Proceeding of the Sixth IEEE CPMT Conference on, vol. pp. 206-212, 2004.
    [7] S. Lin and Z. Lian, “Mechanisms of the Breakup of Liquid Jets”, AIAA Journal, vol. 28, pp. 120-126, 1990.
    [8] J. Sun, J. H. Ng, Y. H. Fuh, Y. San Wong, H. T. Loh and Q. Xu, “Comparison of Micro-Dispensing Performance between Micro-Valve and Piezoelectric Printhead”, Microsystem Technologies, vol. 15, pp. 1437-1448, 2009.
    [9] A. U. Chen and O. A. Basaran, “A New Method for Significantly Reducing Drop Radius without Reducing Nozzle Radius in Drop-on-Demand Drop Production”, Physics of fluids, vol. 14, pp. L1-L4, 2002.
    [10] Y. S. Chen, Y. L. Huang, C. H. Kuo and S. H. Chang, “Investigation of Design Parameters for Droplet Generators Driven by Piezoelectric Actuators”, International Journal of Mechanical Sciences, vol. 49, pp. 733-740, 2007.
    [11] N. Riefler and T. Wriedt, “Generation of Monodisperse Micron‐Sized Droplets Using Free Adjustable Signals”, Particle & Particle Systems Characterization, vol. 25, pp. 176-182, 2008.
    [12] H. Y. Gan, X. C. Shan, T. Eriksson, B. K. Lok and Y. C. Lam, “Reduction of Droplet Volume by Controlling Actuating Waveforms in Inkjet Printing for Micro-Pattern Formation”, Journal of Micromechanics and Microengineering, vol. 19, Article ID 055010, 2009.
    [13] A. S. Yang, C. H. Cheng and C. T. Lin, “Investigation of Droplet-Ejection Characteristics for a Piezoelectric Inkjet Printhead”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 220, pp. 435-445, 2006.
    [14] T. M. Liou, C. Y. Chan and K. C. Shih, “Effects of Actuating Waveform, Ink Property, and Nozzle Size on Piezoelectrically Driven Inkjet Droplets”, Microfluidics and Nanofluidics, vol. 8, pp. 575-586, 2010.
    [15] 劉玉峰, “脈衝波形對壓電式噴墨技術微液滴行為與噴印品質之研究”, 博士論文, 國立成功大學, 2013.
    [16] 白硯方, “壓電噴墨技術中單脈衝波形之脈衝時間對液滴行為之研究”, 碩士論文, 國立成功大學, 2012.
    [17] H. M. Dong, W. W. Carr and J. F. Morris, “An Experimental Study of Drop-on-Demand Drop Formation”, Physics of Fluids, vol. 18, Article ID 072102, 2006.
    [18] Y. F. Liu, M. H. Tsai, Y. F. Pai and W. S. Hwang, “Control of Droplet Formation by Operating Waveform for Inks with Various Viscosities in Piezoelectric Inkjet Printing”, Applied Physics A, vol. 111, pp. 509-516, 2013.
    [19] B. Derby and N. Reis, “Inkjet Printing of Highly Loaded Particulate Suspensions”, MRS Bull., vol. 28, pp. 815-818, 2003.
    [20] R. Meixner, D. Cibis, K. Krueger and H. Goebel, “Characterization of Polymer Inks for Drop-on-Demand Printing Systems”, Microsystem Technologies, vol. 14, pp. 1137-1142, 2008.
    [21] B. W. Jo, A. Lee, K. H. Ahn and S. J. Lee, “Evaluation of Jet Performance in Drop-on-Demand (Dod) Inkjet Printing”, Korean Journal of Chemical Engineering, vol. 26, pp. 339-348, 2009.
    [22] R. Rioboo, M. Marengo and C. Tropea, “Time Evolution of Liquid Drop Impact onto Solid, Dry Surfaces”, Experiments in Fluids, vol. 33, pp. 112-124, 2002.
    [23] T. Lim, S. Han, J. Chung, J. T. Chung, S. Ko and C. P. Grigoropoulos, “Experimental Study on Spreading and Evaporation of Inkjet Printed Pico-Liter Droplet on a Heated Substrate”, International Journal of Heat and Mass Transfer, vol. 52, pp. 431-441, 2009.
    [24] D. B. van Dam and C. Le Clerc, “Experimental Study of the Impact of an Ink-Jet Printed Droplet on a Solid Substrate”, Physics of Fluids, vol. 16, pp. 3403-3414, 2004.
    [25] H. M. Dong, W. W. Carr, D. G. Bucknall and J. F. Morris, “Temporally‐Resolved Inkjet Drop Impaction on Surfaces”, AIChE Journal, vol. 53, pp. 2606-2617, 2007.
    [26] A. Asai, M. Shioya, S. Hirasawa and T. Okazaki, “Impact of an Ink Drop on Paper”, The Journal of Imaging Science and Technology, vol. 37, pp. 205-207, 1993.
    [27] M. Toivakka, “Numerical Investigation of Droplet Impact Spreading in Spray Coating of Paper”, Proc. TAPPI 8th ACFS, 2003.
    [28] D. J. Hayes, W. R. Cox and D. B. Wallace, “Printing Systems for Mems Packaging”, Micromachining and Microfabrication, pp. 206-214, 2001.
    [29] D. B. Wallace and D. J. Hayes, “Micro-Printing System for Mems Packaging Using Nano-Structured Materials”, NanoEngineering World Forum, 2003.
    [30] J. Bharathan and Y. Yang, “Polymer Electroluminescent Devices Processed by Inkjet Printing: I. Polymer Light-Emitting Logo”, Applied Physics Letters, vol. 72, pp. 2660-2662, 1998.
    [31] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits”, Science, vol. 290, pp. 2123-2126, 2000.
    [32] C. W. Hirt and B. D. Nichols, “Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries”, Journal of Computational Physics, vol. 39, pp. 201-225, 1981.
    [33] B. D. Nichols, C. W. Hirt and R. S. Hotchkiss, “Sola-Vof: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries”, NASA STI/Recon Technical Report N, vol. 81, pp. 14281, 1980.
    [34] D. Jang, D. Kim and J. Moon, “Influence of Fluid Physical Properties on Ink-Jet Printability”, Langmuir, vol. 25, pp. 2629-2635, 2009.
    [35] H. M. Dong, W. W. Carr and J. F. Morris, “Visualization of Drop-on-Demand Inkjet: Drop Formation and Deposition”, Review of Scientific Instruments, vol. 77, Article ID 085101, 2006.
    [36] R. Li, N. Ashgriz and S. Chandra, “Droplet Generation from Pulsed Micro-Jets”, Experimental Thermal and Fluid Science, vol. 32, pp. 1679-1686, 2008.
    [37] N. S. Cheng, “Formula for the Viscosity of a Glycerol-Water Mixture”, Industrial & Engineering Chemistry Research, vol. 47, pp. 3285-3288, 2008.
    [38] R. D. Reitz and F. V. Bracco, “Breakup Regimes of a Single Liquid Jet”, Proceedings of Fall Technical Meeting, Eastern Section of the Combustion Institute, pp. 12, 1976.

    下載圖示 校內:2019-08-06公開
    校外:2019-08-06公開
    QR CODE