簡易檢索 / 詳目顯示

研究生: 周政緯
Chou, Cheng-Wei
論文名稱: 應用濺鍍與後退火技術研製p型氧化鎳薄膜之增強型氮化鋁鎵/氮化鎵高速電子遷移率場效電晶體
Achievement of normally off AlGaN/GaN high-electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 73
中文關鍵詞: 氧化鎳增強型氮化鎵半導體元件
外文關鍵詞: Nickel oxide, Enhancement mode, GaN, Semiconductor device
相關次數: 點閱:129下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要目的是探討運用p型氧化鎳薄膜使氮化鋁鎵/氮化鎵高電子遷移率電晶體來達到增強型。藉由濺鍍p型氧化鎳薄膜與後退火處理,可達到高電洞濃度之氧化鎳薄膜,p型氧化鎳在此篇論文中扮演抬升傳導帶高於費米能階的功用,高電洞濃度氧化鎳薄膜可使空乏式高電子遷移率電晶體變成增強式。
    氧化鎳是一個低成本、低毒性、環境友善的材料,被發表為一個p型半導體,為了更了解氧化鎳薄膜(一)表面粗糙度(二)霍爾量測電洞濃度的變化(三)晶向分析(四)化學組成(五)鎳缺陷含量(六)高濃度氧化鎳模型,將會在此篇中進行探討。其中,濺鍍於氧氣電漿中之氧化鎳薄膜之電洞濃度為2.1×1017 cm-3高於氬氣電漿之電洞濃度為6.5×1016 cm-3,原因為氧化鎳晶向從(200)改變成(111),所以鎳空缺增加使電洞濃度增加; 另外,在氧氣環境高溫退火後氧化鎳濃度更加升高至1.3×1018 cm-3歸因於氧化鎳(111)之晶向更強,也就是非化學劑量組成增加,且部分二價鎳離子轉換成三價,所以鎳空缺增加造成電洞濃度提升; 另外通氧退火之後的厚度並沒有改變而表面粗糙度雖從1.93 nm提升至 4.11 nm 但依然是相當可接受的應用範圍
    之後,將此高電洞濃度氧化鎳薄膜放於氮化鋁鎵/氮化鎵高電子遷移率場效電晶體之閘極下方,直流部分臨界電壓3.33V也就是從空乏型變成增強型電晶體,另外,電流開關率變成107, 順偏閘極崩潰電壓也從3.5 V 提升至 10 V,逆偏閘極崩潰電壓也從-78 V 提升至 -198 V; 相較於傳統元件,源極漏電流改善103且閘極漏電流改善105; 此外,臨界電壓的偏移遲滯沒有明顯的改變, 輸出特性曲線中的小訊號與直流訊號差異不大也就是電流倒塌效應不明顯; 在不同波寬的小訊號量測時電流下降效應也不明顯,所以波寬對電流下降影響不高; 這個新方法只使用便宜的材料與簡單的製程便可對氮化鎵高電子遷移率場效電晶體做出正的值的臨界電壓,有著低漏電流、改善電流倒塌效應、提高閘極崩潰電壓、降低臨界電壓遲滯曲線,相較於其他製作增強型的方法比起來有效降低元件之生產時間與成本,所以有商用化的潛力

    The main purpose of this work is to fabricate the enhancement mode gallium nitride-based high electron mobility transistor (HEMT) by high hole concentration nickel oxide (NiOx) thin film. This special thin film is made from sputtering and post-annealing nickel oxide. The high hole concentration p-NiOx plays an important role on lifting up the conduction band of two dimension electron gas higher than Femi level. Therefore, the enhancement mode GaN-based HEMT is successfully completed.
    Nickel oxide, a low-cost, low toxicity and environment friendly material, was proposed as a p-type semiconductor. To further understand the mechanism of p-type nickel oxide thin film, this work discusses a lot of characteristic including roughness, hole concentration, lattice, chemical composition, nickel vacancies, and p-NiOx model. In particular, sputtering p-NiOx in oxygen ambiance gets the hole concentration of 2.1×1017 cm-3 higher than that in Ar ambiance of 6.5×1016 cm-3. This increase resulted from the orientation of (200) to (111) and the nickel vacancies increased. After annealing in oxygen ambiance, the hole concentration gets to 1.8×1018 cm-3. This increase resulted from the orientation of NiOx (111) stronger and the Ni+2 ions became Ni+3 ions. Thus, the nickel vacancies get more than before. Besides, the thickness of NiOx, after annealing in oxygen ambiance, has no change and roughness is from 1.93 nm to 4.11 nm. Although the roughness slightly increases, it is still acceptable to apply in semiconductor devices.
    The normally off AlGaN/GaN HEMT is fabricated only through p-NiOx. Vth completely shifted 3.33 V from the conventional normally on to the normally off HEMT with post-annealed p-NiOx capping layer. The on/off current ratio becomes 107. The forward and reverse gate breakdown enhance from 3.5 V to 10 V and -78 V to -198 V, respectively. The leakage currents of drain and gate decrease by three and five orders, respectively. The threshold voltage hysteresis has no significant change. The pulse measurement shows that the current collapse effect is not obviously high. With different pulse width, the current reduction only slightly decreases. This new way barely uses low-cost material and simple processes to get a positive threshold voltage for AlGaN/GaN based HEMT with lower leakage current, improvement of current collapse, higher gate breakdown voltage, and lower hysteresis of threshold voltage. Hence, it is regarded as a superior potential method to become commercially available in the future work.

    摘要 I Abstract III Acknowledgement V Contents VI Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1 GaN-based high electron mobility transistor and its application 1 1-2 Typical structure of nitride based HEMT 5 1-3 Two dimension electron gas (2-DEG) 6 1-4 Introduction of normally off HEMT 8 1-5 P-type capping layer to fabricate normally off HEMT 10 1-6 Fluorine plasma to fabricate normally off HEMT 12 1-7 Recessed gate structure to fabricate normally off HEMT 14 1-8 Sub-critical barrier to fabricate normally off HEMT 16 1-9 Tunnel junction to fabricate normally off HEMT 18 1-10 Charge storage to fabricate normally off HEMT 20 1-11 Nickel oxide and a low cost method to fabricate normally off AlGaN/GaN HEMT 22 References 23 Chapter 2 26 Mechanisms of Sputtering and Annealing 26 2-1 Growth mechanism of sputtering 26 2-2 The mechanism of thermal annealing 29 References 32 Chapter 3 33 High hole concentration p-NiOx thin film by sputtering and post-annealing 33 3-1 Experiment of sputtering and annealing p-NiOx on i-AlGaN 33 3-2 Hall measurement of sputtering and annealing of p-NiOx 35 3-3 X-ray diffraction 36 3-4 Photo luminescence 38 3-5 X-ray photoelectron spectroscopy 39 3-6 New model of before and after annealing p-NiOx in oxygen ambiance 41 3-7 Root mean square of sputtering and annealing of p-NiOx. 45 3-8 Summary 47 References 48 Chapter 4 49 Normally off AlGaN/GaN high electron mobility transistor by inserting high hole concentration capping layer 49 4-1 Experiment 49 4-2 Transfer characteristic 54 4-3 Output characteristic 56 4-4 Threshold voltage hysteresis 57 4-5 Drain leakage current 58 4-6 Forward gate breakdown 59 4-7 Reverse gate breakdown 61 4-8 Pulse measurement 63 4-9 Off-state drain current 66 4-10 Variations of the gm with the thickness of p-NiOx capping layer before and after annealing. 68 4-11 Compared with five references 69 4-12 Summary 70 References 71 Chapter 5 72 Conclusions and Future Prospects 72 5-1 Conclusions 72 5-2 Future Prospects 73  

    I:
    [1] M. Ishiguro, K. Ikeda, M. Mizuno, M. Iwaya, T. Takeuchi, S. Kamiyama and I. Akasaki “Control of the Detection Wavelength in AlGaN/GaN-Based Hetero-Field-Effect-Transistor Photosensors” Jpn. J. Appl. Phys. , Vol. 52, Num.8S, May, 2013.
    [2] N. Tipirneni, A. Koudymov, V. Adivarahan, J. Yang, G. Simin, and M. Asif Khan, “The 1.6-kV AlGaN/GaN HFETs” IEEE Electron Device Lett., Vol. 27, No. 9, Sep 2006
    [3] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN High Electron Mobility Transistors With InGaN Back-Barriers” IEEE Electron Device Lett., Vol. 27, No. 1, Jan 2006.
    [4] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. D. Brown, S. Singhal, and K. J. Linthicum ” 12 W/mm AlGaN–GaN HFETs on Silicon Substrates” IEEE Electron Device Lett., Vol. 25, No. 7, July 2004
    [5] S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra “Power Performance of AlGaN–GaN HEMTs Grown on SiC by Plasma-Assisted MBE” IEEE Electron Device Lett., Vol. 25, No. 5, May 2004
    [6] S. Rajan, H. Xing, S. DenBaars, U. K. Mishra and D. Jena “AlGaN/GaN polarization-doped field-effect transistor for microwave power applications” Appl. Phys. Lett. 84, 1591, 2004
    [7] T. P. Chow, MRS Symposium No. 622 Materials Research Society, No. T1.1.1.Pittsburgh, 2000,
    [8] Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN schottky rectifiers,”

    Appl. Phys. Lett., vol. 74, pp. 1266-1268, 1999.
    [9] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, “Monte Carlo calculation of the velocity-field relationship for gallium nitride,” Appl. Phys. Lett., vol. 26, pp. 625-627, 1975.
    [10] U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of wurtzite GaN,” J. Appl. Phys., vol. 82, pp. 1649-1655, 1997.
    [11] R. Gaska, J. W. Yang, A. Osinsky, Q. chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, “Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates,” Appl. Phys. Lett., vol. 72, pp. 707-709, 1998.
    [12] http://www.semiconductor-today.com/news_items/2014/MAY/YOLE_280514.shtml
    [13] Yuxia Feng, Hongyuan Wei , Shaoyan Yang, Zhen Chen, Lianshan Wang, Susu Kong, Guijuan Zhao& Xianglin Liu, “Competitive growth mechanisms of AlN on Si (111) by MOVPE” Scientific report, 18 Sep 2014
    [14] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P.Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, J. Appl. Phys.86, 4520 (1999).
    [15]O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, W. Schaff, L. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures” J. Appl. Phys. 85, 3222, Mar 1999.
    [16] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura “Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications” IEEE Trans. Electron Devices, vol. 53, no. 2, Feb 2006.
    [17] Y. Uemoto “Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation” IEEE Trans. Electron Devices, vol. 54, no. 12, Dec 2007.
    [18] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode,” IEEE Trans. Electron Devices. vol. 53, no. 9, pp. 2207–2215, Sep 2006.
    [19] R. Brown, D. Macfarlane, A. Al-Khalidi, X. Li, G. Ternent, H. Zhou, I. Thayne, and E. Wasige,” A Sub-Critical Barrier Thickness Normally-Off AlGaN/GaN MOS-HEMT” IEEE Trans. Electron Devices, Vol. 35, No. 9, Sep 2014
    [20] L. Yuan, H.Chen, and K. J. Chen “Normally Off AlGaN/GaN Metal–2DEG
    Tunnel-Junction Field-Effect Transistors” IEEE Trans. Electron Devices, Vol. 32, No. 3, Mar 2011
    [21] J. J. Freedsman, T. Kubo, and T. Egawa “High Drain Current Density E-Mode Al2O3/AlGaN/GaN MOS-HEMT on Si with Enhanced Power Device Figure-of-Merit (4×108.V2.Ω−1cm−2)” IEEE Trans. Electron Devices, vol. 60, no. 10, Oct 2013.
    [22] J. H Lin, S. J Huang, C. S Lai, and Y. K Su,” Normally-off AlGaN/GaN high-electron mobility transistor on Si(111) by recessed gate and fluorine plasma treatment” Jpn. J. Appl. Phys. 55, 01AD05, 2016.
    [23] T. Palacios, C. S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, “High-Performance E-Mode AlGaN/GaN HEMTs”IEEE Electron Device Lett. 27, 6 (2006).
    [24]K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, IEEE Electron Device Lett. 31, 3, 2010.
    [25] H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent conducting p-type NiO thin film prepared magnetron sputtering” Thin. Soli. Film, vol. 236, pp. 27-31, Dec 1993.
    [26] T. Lalinský, G. Vanko, M. Vallo, E. Dobročka, I. Rýger, and A. Vincze “AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation” Appl. Phys. Lett., vol. 100, no. 9, pp. 092105, May 2012.
    [27] N. Kaneko, O. Machida, M. Yanagihara, S. Iwakami, R. Baba, H. Goto and A. Iwabuchi, ”Normally-off AlGaN/GaN HFET using NiOx Gate with recess,” Proc. Int. Symp. Power Smicond. Devices and ICs, pp. 25−28, Jun 2009.

    II:
    [1] http://integral-storage.com/how-magnetron-sputtering-systems-enhance-deposition/
    [2] https://engineering.dartmouth.edu/microeng/courses/es194/student/jiaying/sem/II.2.html
    [3] http://www.wisegeek.com/what-is-furnace-annealing.htm
    [4]https://en.wikipedia.org/wiki/Annealing_(metallurgy)

    III:
    [1] M. Guziewicz1, J. Grochowski, M. Borysiewicz , E. Kaminska, J. Z. Domagala, W. Rzodkiewicz , B. S. Witkowski, K. Golaszewska , R. Kruszka, M. Ekielski , A. Piotrowska “Electrical and optical properties of NiO films deposited by magnetron sputtering” Optica Applicata, Vol. XLI, No. 2, 2011
    [2] H. Sato, T. Minami, S. Takata, T. Yamada “Transparent conducting p-type NiO thin films prepared by magnetron sputtering” Thin Solid Films Vol. 236, Iss. 1–2, Pages 27-31, 15 Dec 1993
    [3] S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim, and J. W. Kang “Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer” Solar Energy Materials and Solar Cells, Vol. 94, Iss. 12, Pages 2332–2336 Dec 2010,
    [4]H. L. Chen and Y. S. Yang, “Effect of crystallographic orientations on electrical properties of sputter-deposited nickel oxide thin films” Thin Soli Films, Vol. 516, pp. 5509, 2008.
    [5] S. M. Meybodi, S. A. Hosseini, M. Rezaee, S. K. Sadrnezhaad, and D. Mohammadyani, “Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method” Ultr. Sono, vol. 19, pp. 841–845, Jul 2012.
    [6] W. L. Jang, Y. M. Lu, W. S. Hwang, T. Li Hsiung, and H. P. Wang “Point defects in sputtered NiO films” Appl. Phys. Lett , vol. 94, no. 6, pp. 062103, Mar 2009

    IV:
    [1] H. L. Chen and Y. S. Yang, “Effect of crystallographic orientations on electrical properties of sputter-deposited nickel oxide thin films” Thin Solid Films 516, 5509 (2008).
    [2] S. C. Lee, J. Lim, M. W. Ha, J. C. Her, C. M. Yun, and M. K. Han, “High performance AlGaN/GaN HEMT switches employing 500oC oxidized Ni/Au gate for very low leakage current and improvement of uniformity,” in Proc. of Int. Symp. on Power Semiconductor Devices and ICs, Italy, no. 4-8 , pp. 177-180. Jun 2006
    [3] M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, E. Zanoni, and C. Dua, “Mechanisms of RF Current Collapse in AlGaN–GaN High Electron Mobility Transistors,” IEEE Trans. Electron Devices, vol. 8, no. 2, Jun 2008.
    [4] H. Y. Liu, C. S. Lee, F. C. Liao, W. C. Hsu, B. Y. Chou, J. H. Tsai, and H. Y. Lee, “Comparative Studies on AlGaN/GaN MOS-HEMTs with Stacked La2O3/Al2O3 Dielectric Structures” ECS J. Solid State SC. Vol. No. 3,pp. 8, Jul 2014.
    [5] H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent conducting p-type NiO thin film prepared magnetron sputtering” Thin. Soli. Film, vol. 236, pp. 27-31, Dec 1993.
    [6] T. Lalinský, G. Vanko, M. Vallo, E. Dobročka, I. Rýger, and A. Vincze “AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation” Appl. Phys. Lett., vol. 100, no. 9, pp. 092105, May 2012.
    [7] Y. S. Kim, M. W. Ha, O. G. Seok, W. J. An and M. k. Han, “AlGaN/GaN HEMTs employing NiOx-based Schottky contact and floating metal ring for high breakdown voltage”. Int. Symp. Power Smicond. Devices and Ics, pp. 3-7, 2012
    [8] F. Roccaforte, G. Greco, P. Fiorenza, V. Raineri, G. Malandrino, and R. L. Nigro, “Epitaxial NiO gate dielectric on AlGaN/GaN heterostructures” Appl. Phys. Lett. Vol. 100, pp. 063511, 2012.
    [9] Z. Dong, J. Wanga, C.P. Wena, D. Gong, Y. Li, M. Yu, Y. Hao, F. Xu, B. Shen, and Y. Wang, “High breakdown AlGaN/GaN MOSHEMT with thermal oxidized Ni/Ti as gate insulator” Soli. Stat. Elec. Vol. 54, pp. 1339–1342, 2010.

    無法下載圖示 校內:2021-07-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE