簡易檢索 / 詳目顯示

研究生: 周鳳瑛
Chou, Feng-Ying
論文名稱: 從行為、事件相關電位與血液生化指標探討有氧適能與急性健身運動對於年輕成人作業轉換執行功能的影響
Effects of Aerobic Fitness and Acute Exercise on Executive Function During Task Switching Paradigm in Young Adults: A Behavioral, Event-Related Potentials, and Biochemical Study
指導教授: 蔡佳良
Tsai, Chia-Liang
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 32
中文關鍵詞: 急性有氧運動有氧適能事件相關電位腦衍生性神經滋養因子執行功能
外文關鍵詞: acute aerobic exercise, aerobic fitness, event-related potentials, BDNF, executive function
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究主是第一篇同時結合行為、神經電生理與生化表現來澄清有氧適能、急性有氧運動與執行控制功能關係的研究。方法:將54位受測者分為高低有氧適能族群與控制組,每位受測者在30分鐘急性中等強度有氧運動或是休息狀態前後接受作業轉換派典與抽血,並將行為、電生理與血液生化結果作分析。結果:在轉換成本分析中, P3潛時與正確率不受急性運動或有氧適能的影響,而運動後,高有氧適能受測者P3振幅較低有氧適能受測者高,三組受測者,運動後,反應時間皆較運動前快;在混合成本分析中,P3振幅與正確率不受急性運動或有氧適能的影響,運動後,高有氧適能與低有氧適能受測者反應時間皆變快,但只有高有氧適能受測者P3潛時顯著變快。運動後高低有氧適能受測者brain-derived neurotrophic factor (BDNF)較運動前升高,BDNF在運動前後的改變與認知表現的改變是沒有相關的。結論:急性有氧運動使得執行控制功能變得更有效率,特別是針對高有氧適能受測者,而BDNF隨著急性運動而增加,似乎是調控急性有氧運動造成認知表現改變的因子之一。

    Objective: In this study, we provided the first experimental evidence integrating behavioral, neurophysiological, and biochemical data to clarify the association among aerobic fitness, acute aerobic exercise, and executive control function. Methods: Fifty-four young male adults were classified into higher-, lower-aerobic fitness, and control groups. Each participant performed a task switching paradigm before and after a 30-min session of acute moderate exercise or resting session while the behavioral data, electrophysiological indices, and blood samples were collected and analyzed. Results: In the switch cost analysis, the results did not show any effects from acute exercise or the level of aerobic fitness on P3 latency and accurate rate. However, RT was faster in all groups, P3 amplitude was greater for the higher- than the lower-aerobic fitness participants in the post-exercise session. In the mixing cost analysis, although P3 amplitude and accuracy were not affected by acute exercise or aerobic fitness, RT was shorter in the exercise intervention groups. P3 latency was also shortened due to the exercise intervention in the higher-aerobic fitness group not in the lower-aerobic fitness group. Serum BDNF was increased in two exercise intervention groups, such changes were not correlated with the changes in cognitive performance. Conclusion: Acute aerobic exercise can lead to more efficient executive function especially in the higher aerobic fitness adults. BDNF levels were elevated in response to acute exercise and may be a candidate that influences cognitive performance following acute exercise.

    摘要 II Abstract III 致謝 IV List of Tables VI List of Figures VII Chapter1 Introduction 1 Chapter 2 Methods 5 2.1. Participants 5 2.2. Procedure 5 2.3 Statistical analysis 10 Chapter 3 Results 11 3.1. Participant characteristics 11 3.2. Switch cost 16 3.3. Mixing cost 17 3.4. Serum BDNF 19 3.5. Correlations between cognitive performance and biochemical parameters 20 Chapter 4 Discussion 22 Chapter 5 Conclusion 26 References 27

    Aberg M. A. I., Pedersen N. L., Toren K., Svartengren M., Backstrand B., Johnsson T., et al. (2009). Cardiovascular fitness is associated with cognition in young adulthood. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20906-20911.
    Audiffren M., Tomporowski P. D., & Zagrodnik J. (2008). Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task. Acta Psychol (Amst), 129(3), 410-419.
    Baker L. D., Frank L. L., Foster-Schubert K., Green P. S., Wilkinson C. W., McTiernan A., et al. (2010). Effects of Aerobic Exercise on Mild Cognitive Impairment A Controlled Trial. Archives of Neurology, 67(1), 71-79.
    Bernard T., Gavarry O., Bermon S., Giacomoni M., Marconnet P., & Falgairette G. (1997). Relationships between oxygen consumption and heart rate in transitory and steady states of exercise and during recovery: Influence of type of exercise. European Journal of Applied Physiology and Occupational Physiology, 75(2), 170-176.
    Caspersen C. J., Powell K. E., & Christenson G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Reports, 100(2), 126-131.
    Chang Y., Labban J., Gapin J., & Etnier J. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101.
    Chen H. Y. (2000). Beck Depression Inventory-II Guideline. Taipei, Taiwan: Chinese Behavioral Science Corporation
    Chwalbinska-Moneta J., Krysztofiak F., Ziemba A., Nazar K., & Kaciuba-Uscilko H. (1996). Threshold increases in plasma growth hormone in relation to plasma catecholamine and blood lactate concentrations during progressive exercise in endurance-trained athletes. European Journal of Applied Physiology and Occupational Physiology, 73(1-2), 117-120.
    Colcombe S., & Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125-130.
    Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3316-3321.
    Coles K., & Tomporowski P. D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26(3), 333-344.
    Cowan N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323-338.
    Draper S., McMorris T., & Parker J. K. (2010). Effect of acute exercise of differing intensities on simple and choice reaction and movement times. Psychology of Sport and Exercise, 11(6), 536-541.
    Duncan‐Johnson C. C., & Donchin E. (1977). On quantifying surprise: The variation of event‐related potentials with subjective probability. Psychophysiology, 14(5), 456-467.
    Dustman R. E., Emmerson R. Y., Ruhling R. O., Shearer D. E., Steinhaus L. A., Johnson S. C., et al. (1990). Age and fitness effects on EEG, ERPs, visual sensitivity, and cognition. Neurobiology of Aging, 11(3), 193-200.
    Ferris L. T., Williams J. S., & Shen C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39(4), 728-734.
    Garnsey S. M. (1993). Event-related brain potentials in the study of language- an introduction. Language and Cognitive Processes, 8(4), 337-356.
    Gold S. M., Schulz K.-H., Hartmann S., Mladek M., Lang U. E., Hellweg R., et al. (2003). Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. Journal of Neuroimmunology, 138(1-2), 99-105.
    Gordon N. F. (2009). ACSM's guidelines for exercise testing and prescription (Vol. 54): Lippincott Williams & Wilkins.
    Griffin E. W., Mullally S., Foley C., Warmington S. A., O'Mara S. M., & Kelly A. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology and Behavior, 104(5), 934-941.
    Guo N. W., Liu H. C., Wang P. F., & Hsu T. C. (1989). Introduction of Chinese version of Mini-Mental State Examination. Clinical Medicine, 23(1), 39-42.
    Hillman C. H., Castelli D. M., & Buck S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37(11), 1967-1974.
    Hillman C. H., Kramer A. F., Belopolsky A. V., & Smith D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59(1), 30-39.
    Hillman C. H., Pontifex M. B., Raine L. B., Castelli D. M., Hall E. E., & Kramer A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044-1054.
    Hillman C. H., Snook E. M., & Jerome G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48(3), 307-314.
    Hillman C. H., Weiss E. P., Hagberg J. M., & Hatfield B. D. (2002). The relationship of age and cardiovascular fitness to cognitive and motor processes. Psychophysiology, 39(3), 303-312.
    Hsieh S., & Cheng P. (2006). Task reconfiguration and carryover in task switching: An event-related potential study. Brain Research, 1084(1), 132-145.
    Hung T.-M., Tsai C.-L., Chen F.-T., Wang C.-C., & Chang Y.-K. (2013). The Immediate and Sustained Effects of Acute Exercise on Planning Aspect of Executive Function. Psychology of Sport and Exercise.
    Kalyani M. N., Ebadi A., Mehri S. N., & Jamshidi N. (2008). Comparing the Effect of Fire-Fighting Protective Clothes and Usual Work Clothes on Aerobic Capacity (VO2max). Pakistan Journal of Medical Sciences, 24(5), 678-683.
    Kamijo K., O'Leary K. C., Pontifex M. B., Themanson J. R., & Hillman C. H. (2010). The relation of aerobic fitness to neuroelectric indices of cognitive and motor task preparation. Psychophysiology, 47(5), 814-821.
    Kamijo K., & Takeda Y. (2010). Regular physical activity improves executive function during task switching in young adults. International Journal of Psychophysiology, 75(3), 304-311.
    Kashihara K., Maruyama T., Murota M., & Nakahara Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28(4), 155-164.
    Kramer A. F., Hahn S., Cohen N. J., Banich M. T., McAuley E., Harrison C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418-419.
    Kumar N. (2010). Effect of acute moderate exercise on cognitive event-related potentials N100, P200, N200, and interpeak latencies. Indian Journal of Psychological Medicine, 32(2), 131.
    Liou Y. M., & Wu J. S. (2009). The appraisal and questionnaire of physical activity. Taiwanese Association of Diabetes Educators Newsletter, 11-17.
    Magnié M.-N., Bermon S., Martin F., Madany-Lounis M., Suisse G., Muhammad W., et al. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37(3), 369-377.
    Mangun G. R., Buonocore M. H., Girelli M., & Jha A. P. (1998). ERP and fMRI measures of visual spatial selective attention. Human Brain Mapping, 6(5-6), 383-389.
    Masley S., Roetzheim R., & Gualtieri T. (2009). Aerobic Exercise Enhances Cognitive Flexibility. Journal of Clinical Psychology in Medical Settings, 16(2), 186-193.
    Mattson M. P., Maudsley S., & Martin B. (2004). BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences, 27(10), 589-594.
    McMorris T., Davranche K., Jones G., Hall B., Corbett J., & Minter C. (2009). Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. International Journal of Psychophysiology 73(3), 334-340.
    Monsell S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134-140.
    Neeper S. A., Gomezpinilla F., Choi J., & Cotman C. (1995). Exercise and brain neurotrophins. Nature, 373(6510), 109.
    Polich J., & Kok A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological Psychology, 41(2), 103-146.
    Pontifex M. B., Hillman C. H., Fernhall B., Thompson K. M., & Valentini T. A. (2009). The Effect of Acute Aerobic and Resistance Exercise on Working Memory. Medicine and Science in Sports and Exercise, 41(4), 927-934.
    Rasmussen P., Brassard P., Adser H., Pedersen M. V., Leick L., Hart E., et al. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology, 94(10), 1062-1069.
    Rogers R. D., & Monsell S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology-General, 124(2), 207-231.
    Rojas Vega S., Strüder H. K., Vera Wahrmann B., Schmidt A., Bloch W., & Hollmann W. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research, 1121(1), 59-65.
    Rubin O., & Meiran N. (2005). On the origins of the task mixing cost in the cuing task-switching paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(6), 1477-1491.
    Scisco J. L., Leynes P. A., & Kang J. (2008). Cardiovascular fitness and executive control during task-switching: An ERP study. International Journal of Psychophysiology, 69(1), 52-60.
    Seifert T., Brassard P., Wissenberg M., Rasmussen P., Nordby P., Stallknecht B., et al. (2010). Endurance training enhances BDNF release from the human brain. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 298(2), R372-377.
    Sjoberg H. (1980). Physical fitness and mental performance during and after work. Ergonomics, 23(10), 977-985.
    Smith P. J., Blumenthal J. A., Hoffman B. M., Cooper H., Strauman T. A., Welsh-Bohmer K., et al. (2010). Aerobic Exercise and Neurocognitive Performance: A Meta-Analytic Review of Randomized Controlled Trials. Psychosomatic Medicine, 72(3), 239-252.
    Stroth S., Kubesch S., Dieterle K., Ruchsow M., Heim R., & Kiefer M. (2009). Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Research, 1269, 114-124.
    Sutoo D., & Akiyama K. (1996). The mechanism by which exercise modifies brain function. Physiology and Behavior, 60(1), 177-181.
    Sutoo D., & Akiyama K. (2003). Regulation of brain function by exercise. Neurobiology of Disease, 13(1), 1-14.
    Tang S. W., Chu E., Hui T., Helmeste D., & Law C. (2008). Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neuroscience Letters, 431(1), 62-65.
    Themanson J. R., & Hillman C. H. (2006). Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience, 141(2), 757-767.
    Themanson J. R., Hillman C. H., & Curtin J. J. (2006). Age and physical activity influences on action monitoring during task switching. Neurobiology of Aging, 27(9), 1335-1345.
    Themanson J. R., Pontifex M. B., & Hillman C. H. (2008). Fitness and action monitoring: Evidence for improved cognitive flexibility in young adults. Neuroscience, 157(2), 319-328.
    Winter B., Breitenstein C., Mooren F. C., Voelker K., Fobker M., Lechtermann A., et al. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597-609.
    Yanagisawa H., Dan I., Tsuzuki D., Kato M., Okamoto M., Kyutoku Y., et al. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. NeuroImage, 50(4), 1702-1710.
    Yerkes R. M., & Dodson J. D. (1908). The relation of strength of stimulus to rapidity of habit‐formation. Journal of Comparative Neurology and Psychology, 18(5), 459-482.
    Zoladz J. A., Pilc A., Majerczak J., Grandys M., Zapart-Bukowska J., & Duda K. (2008). Endurance training increases plasma brain-derived neurotrophic factor concentraction in young healthy men. Journal of Physiology and Pharmacology, 59(4), 119-132.

    無法下載圖示 校內:2019-01-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE