| 研究生: |
林佳良 Lin, Chia-Liang |
|---|---|
| 論文名稱: |
矽氧烷改質聚胺基甲酸酯高分子電解質之製備與特性探討 polysiloxane modify polyurethane polymer solid electrolytes |
| 指導教授: |
郭炳林
Kuo, P.L. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 聚矽氧烷 、高分子電解質 、聚胺基甲酸酯 |
| 外文關鍵詞: | polyurethane, SPE, polysiloxane |
| 相關次數: | 點閱:57 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同比例末端基為氫氧基團的聚矽氧烷(FM-4411)及polyethylene glycol (PEG) 與二苯甲基二異氰酸鹽(diphenylmethane diisocyanate, MDI)反應生成預聚物(prepolymer),再以乙二醇(ethylene glycol, EG)作為鏈延展劑(chain extender)合成polyurethane,再分別將其製成膠態及固態高分子電解質。
在高分子鑑定方面,以FT-IR和液態核磁共振(Solution-NMR)來確定高分子之組成結構。另外藉由DSC與TGA等測試方法觀察其Tg和熱穩定性等高分子之基本物性,有助於分析高分子物性對導電度的影響。並利用交流阻抗分析法(AC-impedance)分析其在不同溫度下之導電度,並探討polysiloxane對其物性與導電度之影響。在高分子電解質之morphology方面,利用FTIR、DSC探討鋰鹽加入後其形態之變化,另外,藉由固態核磁共振儀(Solid-State NMR)探討鋰離子在高分子電解質內的傳導機構與高分子形態間的關聯性。
膠態高分子電解質部份,由實驗結果可知,因吸入電解液而有塑化之效果,使Tg下降,增加離子傳導通道,提升其導電度。此系列膠態高分子電解質(含50 wt% LiClO4/PC)在室溫其導電度可達10-4 S/cm,在60℃其甚至可高達10-3 S/cm且在此時高分子薄膜為homogenous並具有不錯的機械性質,具有應用在鋰離子高分子電解質上之潛力。
固態高分子電解質部份,由實驗結果可知隨著LiClO4濃度的增加,Tg會先上升至最高值而後下降,而當溫度上升時離子傳導行為會發生改變,由Arrehniius model轉變成VTF model。此外,隨著鋰鹽濃度的增加solid state NMR光譜以及7Li T1(自旋-晶格弛緩時間)都有明顯的變化,證明在高分子中摻入鋰鹽會造成高分子之形態發生改變,由 7Li MAS (with high power decoupling) NMR光譜的結果得知鋰離子在SPE內至少有兩種化學環境;由13C CP/MAS NMR光譜在加入鋰鹽後部分譜寬變寬且化學位移發生改變得知,鋰離子和polymer chain形成暫時性鍵結導致高分子鏈運動變慢或者是分佈變廣;由29Si CP/MAS、1H MAS NMR的結果得知,鋰離子不易與siloxane重複單位中的氧原子形成配位,但易與PEG軟鏈段上之ether oxygen形成配位。此研究結果可作為日後設計高分子電解質之依據並有助於深入探討鋰離子在高分子電解質內之傳導機構。
Segmented polyurethanes were synthesized from poly(dimethylsiloxane) diol mixed with poly(ethylene glycol) (PEG) in different ratios as soft segment, 4,4’-diphenylmethane diisocyanate as hard segment, and ethylene glycol as chain extender. FT-IR, NMR, and thermal analysis were used to characterize the structure and morphology of these copolymers. These copolymers were then swollen in a LiClO4/PC liquid electrolyte solution to get gel-like polymer electrolytes. The Li+ ions are more effectively adsorbed in the microphase of PEG, however, the existence of polysiloxane significantly improve the property of solvent resistance. Then, impedance spectroscopy was used to investigate the conductivity of these polymers electrolytes as a function of the content of LiClO4/PC liquid electrolyte. The ionic conductivity of these systems reaches an order of 1.4×10-3 Scm-1 at 60℃ and 5.9×10-4 Scm-1 at 25℃, respectively, where the films with the increase of 50wt% immersed in 1M LiClO4/PC are homogenous and exhibit good mechanical properties.
Solid polymer electrolytes based on PS55 have been characterized by differential scanning calorimetry (DSC), ionic conductivity, and multinuclear solid-state NMR measurements. The results of DSC measurements indicate the formation of transient cross-links between Li+ ions and the ether oxygens on complexation with LiClO4, resulting in an increase in the soft segment Tg. However, the soft segment Tg remains almost invariant at high salt concentration. There is a conductivity jump at around 310~330 K that the behavior of ionic conductivity changes from Arrehnius- to Vogel-Tammann-Fulcher (VTF)-type behavior. Below this jump temperature, the conductivity follows Arrehnius-like behavior, implying a diffusing mechanism for transport of the charge carriers where the charge carriers are decoupled from the segmental motion of the polymer chain. By contrast, the diffusion of charge carrier is assisted by the segmental motions of the polymer chains above the jump temperature, suggested by the VTF-like behavior. At high salt concentration, the ionic conductivity decreases due to the formation of ion-pairs and/or ion clusters. Solid-state 13C NMR results from cross-polarization time constant (TCH) measurements along with two-dimensional (2D) WISE NMR suggest that a significant decrease in the mobility of the soft segment as the salt is added. Polysiloxane backbone is not affected until at a higher salt concentration, as observed by the linewidth change in the 29Si NMR spectrum. The onset temperature of 7Li motional line-narrowing is correlated with the soft segment Tg. The activation energies obtained from ionic conductivity, 7Li linewidth and T1 measurements indicate that there is a strong correlation between the ionic conductivity of the solid polymer electrolyte and the mobile lithium cation.
1. J. Hajek, French Patent, 1949, 8, 10.
2. 費定國、高昀成“碳材料在鋰電池之發展與應用”工業材料121期,頁80(86.1)
3. 林宗儀,國立成功大學化學工程研究所碩士論文,2000
4. 姚慶意“高分子鋰電池”工業材料122期,頁117(86.2)
5. Wright, P. V.; Fenton, D. E.; Parke, J. M.; Polymer, 1973, 14, 589.
6. Armand, M.; Chabagno, J. M. and Duclot, M. Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, Extended Abstracts (Sept. 1978)
7. C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P.Rigaud, Solid State Ionics, 1983, 11, 91.
8. Shriver, D. F.; Ratner, M. A. Chem. Rev., 1988, 245, 4.
9. 楊家諭、鄭程鴻、邱永城 “鋰離子二次電池電解質介紹” 工業材料110期,頁82(85.2)
10. M.G. Fiona, “Solid Polymer Electrolyte: fundamentals and technological applications”Chap.6, 1997, p95-123.
11. H.Cheradame, J. F. LeNest, A. Gandini and M. Leveque, J. Power Sources, 1985, 14, 27.
12. D.J. Bannister, G.R. Davies, I.M. Ward and J. E. McIntyre, Polymer, 1984, 25, 1291.
13. 楊長榮、唐宏怡、張國恩“高分子鋰二次電池電解質材料介紹”工業材料133期,頁93(87.1)
14. Armstrong, R. D.; Clarke, M. D. Solid State Ionics, 1984, 11, 305.
15. C. Hepburn, “Polyurethane Elastomers”, Elsevier, 1992, p3-4.
16. Silverstein, R. M.; Webster, F. X. “Spectrometric Identification of Organic”, 1963.
17. Rabek, J. F. “Experimental Methods in Polymer Chemistry”, New York, 1980.
18. 陳力俊 “電子顯微鏡學發展沿革與未來趨勢” 科儀新知,第十九卷第二期,頁105 (86.10)
19. 賈緒威,科儀新知,第二十一卷第二期,頁18 (88.10)
20. E. R. Andrew, A. Bradbury and R. G. Eades, Nature, 1958, 182, 1659.
21. I. J. Loew, Phys. Rev. Lett., 1959, 2, 285.
22. E. Fukushiuma, S. B. W. Roeder, “Experimental Pulse NMR-A Nuts and Bolts Approach”, Addision-Wesley, 1981.
23. Abragam, A. “The principles of Nuclear Magnetism”, Clarendon, Oxford, 1961.
24. Slichter, C. P. “Principles of magnetic resonance”, 3nd Eds. Springer-Verlag, New York, 1989.
25. Bloembergen, N., Purcell, E. M. and Pound, R. V., Phys. Rev., 1948, 73, 679.
26. Simon T. C. Ng, Maria Forsyth, Douglas R. Macfarlane, Maria Garcia, Mark E. Smith and Johu H. Strange, polymer, 1998, 39, 6261.
27. J. G. Webster, “Electrical Impedance Tomography”, Adam Hilger, Bristol, 1990.
28. “Basics on AC Impedance Measurements”, Application Note AC-1. Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.
29. Schmidt-Rohr, K.; Clauss, J.; Spiess, H. W., Macromolecules, 1992, 25, 3272.
30. J. M. G. Cowie, In: MacCallum JR, Vincent CA, (Eds). “Polymer Electrolytes Reviews 1”, London: Elsevier, 1987, p285
31. D. W. Kim, Y. R. Kim, J. K. Park and S. I. Moon, Solids State Ionics, 1998, 106, 329.
32. T. C. Wen, S. S. Luo and C. H. Yang, Polymer, 2000, 41, 6755.
33. Seki, M.; Sato, K. Makromol. Chem., 1992, 193, 2971.
34. van Heumen, J. D.; Steven, J. R. Macromolecules, 1995, 28, 4268.
35. Ferry, A.; Jacobsson, P.; van Heumen, J. D.; Stevens, J. R. Polymer, 1996, 37, 737.
36. A.W. McLennaghan and R.A. Pethrick, Eur Polym J, 1988, 24, 1063.
37. A.W. McLennaghan, A. Hooper and R.A. Pethrick, Eur Polym J, 1989, 25, 1297.
38. M. Watanabe, S. Dohashi, K. Sanui, N. Ogata, T. Kobayashi and E. Ohtaki, Macromolecules, 1985, 18, 1945.
39. M. Watanabe, K. Sanui and N. Ogata, Macromolecules, 1986, 19, 815.
40. Wen, T. C.; Wu, M. S.; Yang, C. H. Macromolecules, 1999, 32, 2712.
41. S. Schantz, L. M. Torell and J. R. Stevens, J Chem Phys, 1991, 94, 6862.
42. C. L. Lin, H. M. Kao, R. R. Wu, and P. L. Kuo, Macromolecules, 2002, 35, 3083.
43. Coleman, M. M.; Lee, K. H.; Skrovanek, D. J.; Painter, P. C. Macromolecules, 1986, 19, 2149.
44. Coleman, M. M.; Skrovanek, D. J.; Hu, J.; Painter, P. C. Macromolecules, 1988, 21, 59.
45. Lee, H. S.; Wang, Y. K.; Hsu, S. L. Macromolecules, 1987, 20, 2089.
46. Luo, N.; Wang, D. N.; Ying, S. H. Macromolecules, 1997, 30, 4405.
47. Fish, D.; Khan, I. M.; Wu, E.; Smid, J. Br. Polym. J., 1988, 20, 281.
48. Nagaoka, K.; Naruse, H.; Shinohara, I.; Watanabe, M. J. Polym. Sci., Polym. Lett. Ed. 1984, 22, 659.
49. Ogumi, Z.; Uchimoto, Y.; Takehara, Z. Solid State Ionics, 1989, 35, 417.
50. Cohen, M. M.; Turnbull, D. J. Chem. Phys., 1959, 31, 1164.
51. T. G. Fox and P. J. Flory, J. Appl. Phys., 1950, 21, 581.
52. P. J. Flory and T. G. Fox, J. Amer. Chem. Soc., 1948, 70, 2384.
53. A. K. Doolittle, J. Appl. Phys., 1951, 22, 1471.
54. Hawker, C. J.; Chu, F.; Pomery, P. J.; Hill, D. J. T. Macromolecules, 1996, 29, 3831.
55. Beshah, K.; Mark, J. E.; Ackerman, J. L. Macromolecules, 1986, 19, 2194.
56. O’Gara, J. F.; Nazri, G.; MacArthur, K. M. Solid State Ionic, 1991, 47, 87.
57. Ibemisi, J. A.; Kimsinger, J. B. J. Polym. Sci., Polym. Chem. Ed., 1980, 18, 1123.
58. Bekturov, E. A.; Kudaibergenov, S. E.; Bakanova, Z. K.; Vshamov, V. Z. Kanapyanova, G. S. Polym. Commun. 1985, 26, 81.
59. Popov, A. I.; Smitana, A. J.; Kintzinger, J. –P.; Nguyen, T. T. T. Helv. Chim. Acta, 1980, 63, 668.
60. Fedarko, M. –C. J. Magn. Reson. 1973, 12, 30.
61. Mehring, M. “Principles of High Resolution NMR in Solids”, 2nd Eds. Springer-Verlag, New York, 1983.
62. Schmidt-Rohr, K.; Spiess, H. W. “Multidimensional Solid-State NMR and Polymers”, Academic Press, 1994.
63. Poole, Ch. “Electron Spin Resonance”, 2nd Ed., Wiley, New York, 1983.
64. Wintersgill, M. C.; Fontanella, J. J.; Calame, J. P.; Smith, M. K.; Jones, T. B.; Greenbaum, S. G.; Adamic, K. J.; Shetty, A. N.; Anden, C. G. Solid State Ionics, 1986, 18/19, 326.
65. Chung, S. H.; Jeffrey, K. R.; Steven, J. R. J. Chem. Phys., 1991, 94, 1803.
66. Peter P. Chu, Hsiu-Ping Jen, Fang-Rey Lo, and C. L. lang, Macromolecules, 1999, 32, 4738.
67. Williams, G. J. Non-Cryst. Solids, 1991, 131-133, 1.
68. Maring, D.; Meurer, B.; Weill, G. J. Polym. Sci., Part B: Polym. Phys., 1995, 33, 1235.
69. Kuchler, W.; Heitjans, P.; Payer, A.; Schollhorn, R. Solid State Ionics, 1994, 70, 434