| 研究生: |
王金鐘 Wang, Chin-Chung |
|---|---|
| 論文名稱: |
轉爐石作為基底層材料及其工程特性之研究 Engineering Characteristics of Basic Oxygen Furnace Slag and Used as Base Layer Material |
| 指導教授: |
李德河
Lee, D. H. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 濕裹法 、轉爐石 、取代濕裹並用法 、熟化 、回脹率 、鹼-碳酸鹽反應 、活性 、鹽基度 |
| 外文關鍵詞: | Substitution Wet-binder Method, Ageing, Wet-binder Method, Alkalinity, Activity, Alkali-Carbonate Reaction, Basic Oxygen Furnance Slag (BOF), Swell |
| 相關次數: | 點閱:102 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉爐石為煉鋼過程中產生的副產品,其可作為土木材料使用,惟因本身具有回脹性,致使其用途受到限制,為改善此缺點,本研究第一部分建立轉爐石物性、化性及基本力學性質等材料特性及其影響因子,第二部分轉爐石穩定方法探討—濕裹、取代及濕裹並用法,建立波索蘭材料添加量與回脹、重金屬鉻溶出量關係,第三部分現地試舖參數量測與化性檢測。
由研究結果顯示,(1)由熱重分析(TGA)得知熟化前後轉爐石中氫氧化鈣明顯下降,碳酸鈣則不斷上升,證明轉爐石是在強鹼環境下一直發生鹼-碳酸鹽反應。(2)從養治方法上考量,採用JIS A5015法及Koide法養治溫度高(80±3℃)、細料多、自由回脹可產生合理的回脹量,採用ASTM D4792法養治溫度低(70±3℃)、細料較少、限制回脹,測得回脹率較低,CBR值則較高;經濟評估,濕裹法成本較低。
轉爐石穩定方法中濕裹法及取代濕裹並用法都是波索蘭材料添加法,兩者均具有抑制回脹效果,其回脹率均遠低於1.5%的要求,就CBR值而言濕裹法大於取代濕裹並用法。由波索蘭材料添加量與回脹率及重金屬溶出量回歸出關係式,其回脹率關係式為Y=5.35X-0.507 ;其重金屬溶出量關係式為Y=729.81X-0.494 式中 Y分別為回脹率及重金屬鉻溶出量,X為波索蘭材料添加量,只要添加18%以上的波索蘭材料達即可符合規範工程品質及環境品質要求,此回歸式為本研究最大貢獻。
就現場試舖而言,兩法滾壓次數達10次~14次即可達到100%以上壓實度;回脹率介於0.01%~0.06%之間;其地下水質方面酸鹼值介於6.8~7.25之間;就重金屬鎘、鉻、銅、鋅、鎳、鉛、汞、砷的濃度,遠低於第二類地下水監測基準及管制標準,因此不會對地下水質造成負面影響。
Basic Oxygen Furnace Slag (BOF) is a residual product of steel-making process, which can be used as civil engineering material, but because its swelling problem so it has a lot of limitation for being used. To overcome this weakness, in the first part this research establishes the physical and chemical properties of BOF, its basic mechanical properties, and also the other factors which are concerned, etc. The second part is to confer the BOF stabilization methods i.e. wet-binder method and substitution wet-binder method, to establish the relationship of the amount of Pozzolan material added with the swelling amount and the heavy metal leaching amount of Cr. The third part is measuring the parameters and examining the chemical properties on the test site.
The results of this research show that: (1) By Thermal Gravity Analysis (TGA) we find that the Ca(OH)2 amount in BOF before and after ageing decreases obviously, and the CaCO3 amount increases continuously, which proves that BOF under strong alkali conditions will has alkali-carbonic acid reactions continuously. (2) Considering the raising periods, when using JIS A5015 and Koide’s Method the raising temperature is high (80±3℃), it has a lot of fine grains, and the free swelling amount is reasonable. When using ASTM D4792 method the raising temperature is low (70±3℃), it has fewer fine grains, and can restricts swelling which produces lower swelling amount and higher CBR value. Considering economical way, the wet-binder method needs lower cost.
The BOF stabilization method like wet-binder and substitution wet-binder method are methods of adding Pozzolan material, which both of them can restrict swelling, and the results are far below the 1.5% demand. In CBR value, the wet-binder method gives higher result than substitution wet-binder method. From the regression of the relationship of the amount of Pozzolan material added with the swelling amount and the heavy metal leaching amount, we have the swelling ratio formula as Y=5.35X-0.507; and the heavy metal leaching amount formula as Y=729.81X-0.494. The Y in the formula represents the swelling ratio and the heavy metal leaching amount when the X represents the amount of Pozzolan material added. While the amount of Pozzolan material added surpasses 18%, it can fit with the engineering quality standard and also the demand of environment quality. This regression formula is the most important contribution of this research.
In the test site, both method needs 10 to 14 cycle of rolling to reach more than 100% field compaction degree; swelling ratio is between 0.01% and 0.06%; the pH value of groundwater resources is between 6.8 and 7.25; the concentration of heavy metal Cd, Cr, Cu, Zn, Ni, Pb, Hg and As all far below the second category groundwater monitoring standard and the control criterion, so it will not gives negative effects to groundwater quality.
王櫻茂,「鹼 骨材反應( I )」混凝土構造物的耐久性系列,第43~110頁(1999)。
王金鐘,「轉爐石工程特性之研究」,技術學刊,第十八卷,第三期,第263~272頁(2003)。
日本鐵鋼爐石協會技術委員會,「鋼鐵爐石使用手冊」,日本鐵鋼爐石協會(1988)。
田永銘,楊世和,彭柏翰,王淑慧,「台灣的鹼—骨材反應問題與對策」,土木水利,第二十六卷,第一期,第78-94頁 (1999)。
李德河、王金鐘、李春雄,「轉爐石回脹特性之研究」,2002年公共工程學術研討會論文集, 第219~245頁(2002)。
李德河,王金鐘,李春雄,「轉爐石之回脹特性及其處理對策之研究」,中國土木水利工程學刊,第十六卷,第四期,第583~592頁(2004)。
林志棟,「氣冷轉爐石添加飛灰、底灰應用於基底層材料之研究」,期末報告,國立中央大學土木工程研究所(2001)。
吳學禮,「中鋼爐石使用於路(道)面基底層應用手冊」,中華顧問工程司研究報告,(1991)。
周權英,「中鋼爐石用為道路材料評估分析之研究」,碩士論文,交通大學交通運輸研究所,新竹(1987)。
周權英、黃台生,「中鋼爐石用為道路材料評估分析之研究(二)」,台灣公路工程,第18卷,第9期,第35~48頁(1992)。
周權英、黃台生,「中鋼爐石用為道路材料評估分析之研究(三)」,台灣公路工程,第18卷,第10期,第24~34頁(1992)。
周權英,「中鋼爐石用於道路面層骨材分析評估之研究」,第八屆舖面工程學術研討會論文集,第449~458頁,台北(1995)。
黃兆龍,「混凝土性質與行為」,詹氏書局,第129~134頁﹙2002﹚。
洪加興、蔡孟勳、謝榮一,「中鋼氣冷高爐渣作為基層材料之試驗道路之研究」,住都雙月刊,第94期,第29~36頁,(1991)。
黃正忻,「轉爐石級配料應用於舖面工程基底層材料之力學性質與施工特性研究」,技術學刊,第十七卷,第二期,第161~170頁(2002)。
黃正忻,「轉爐石級配料應用於基底層材料施工特性與品質控制技術之研究」,正修技術學院教師專題研究報告,報告編號88-09, (2000)。
楊貫一,「爐石資源化—中鋼公司爐石應用的過去與未來」,技術與訓練,第17卷,第1期,第31~46頁﹙1992﹚。
楊全成、王金鐘、黃正忻,「高雄港務局122號碼頭場地新建工程檢驗報告書」, 正修技術學院土木系,正專建教(87)第029號建教合作計劃﹙1999﹚。
劉國忠,「煉鋼爐渣之資源化技術與未來推展方向」,環保月刊,第4期十月號,第117~118頁﹙2001﹚。
蔡敏行,「鋼鐵爐渣應用於海洋生態保育—日本爐渣應用概況介紹」,簡報(2001)。
「爐石利用推廣手冊」,中國鋼鐵公司,﹙2000﹚。
JIS A 5015,「道路用鋼鐵爐渣-解說」,﹙1992﹚。
「公路工程施工說明書」, 台灣省交通處公路局編印,第21~24頁﹙1997﹚。
「東西向快速公路高雄潮州線(12k+755~20k+500)高架橋及交流道工程地質鑽探BH-2~BH-4」,中央地質調查所(2004)。
行政院環境保護署,戴奧辛及呋喃檢測方法 —同位素標幟稀釋氣相層析/高解析質譜法,NIEA M801.10B(2004)。
行政院環境保護署,事業廢棄物毒性特性溶出程序,NIEA R201.13C,(2003)
行政院環境保護署,重金屬檢測方法總則NIEA M103.00C(2000)。
行政院環境保護署,事業廢棄物檢測方法總則,NIEA R101.00C,(1999)。
行政院環境保護署,事業廢棄物毒性特性溶出程序,NIEA R201.11C,(2001)。
American Association of State Highway and Transportion Officials,Standard Method of Test,“Density of Soil In-Place by the Sand Cone Method,”AASHTO Designation:T191-98,Part II Tests, (1998).
American Association of State Highway and Transportion Officials,Standard Method of Test,“Density of Soil In-Place by the Rubber-Balloon Method,”AASHTO Designation:T205-98,Part II Tests, (1998).
American Association of State Highway and Transportion Officials,Standard Method of Test,“Density of Soil and Soil-Aggregate in Place by Nuclear Methods(Shallow Depth),”AASHTO Designation:T238-98,Part II Tests, (1998).
American Association of State Highway and Transportion Officials,Standard Method of Test,“Moisture Content of Soil and Soil-Aggregate in Place by Nuclear Methods(Shallow Depth),”AASHTO Designation:T239-98,Part II Tests, (1998).
American Society for Testing and Materials, Designation :D2940-03,Standard Specification for Graded Aggregate Material for Bases and Sub-bases for Highway or Airports,” annual Book of ASTM Standards,Vol.04.03,West Conshohocken, Pennsylvania(2003).
American Society for Testing and Materials, Designation :D4792-00,Standard Test Method for Potential Expansion of Aggregates from Hydration Reactions annual Book of ASTM Standards, Vol.04.03,West Conshohocken, Pennsylvania(2000).
American Society for Testing and Materials, Designation : D 1883-99,Standard Test Method for CBR(California Bearing Ratio) of Laboratory-Compacted Soils,(1999).
American Society for Testing and Materials,Standard Specification D1241-98,“Material for Soil-Aggregate,Subbases,Bases,and Surface Courses,”Annual Book of ASTM Standard, West Conhocken,Pennsylvania,(1998).
American Society for Testing and Materials,Standard Specification E 1266-88,Pratice for Processing Mixtures of Lime,Fly Ash,and Heavy Metal Wastes in Structural Fills and fills and Other Construction Applications,American Society for Testing Material,Annual Book of ASTM Standard, Philadelphia(2000).
American Society for Testing and Materials,Standard Specification E1861-97 Standard Guide for Use of Coal Combustion By-Products in Structure Fills American Society for Testing Material,West Conshohocken,Pennsylvania(1997).
AASHTO, AASHTO M147, (1998). Materials for aggregate and soil-aggregate sub-base, base and surface courses, Standard Specification for Transportation Materials and Methods of Sampling and Testing, AASHTO, part I, pp.164-165.
AASHTO, AASHTO T193, (1998). The California bearing ratio, Standard Specification for Transportation Materials and Methods of Sampling and Testing, AASHTO, part II, pp. 594-601.
AASHTO, AASHTO T176, (1998). Plastic fines in graded aggregates and soils by use of the sand equivalent test, Standard Specification for Transportation Materials and Methods of Sampling and Testing, AASHTO, part II, pp. 547-554.
AASHTO, AASHTO T96, (1998). Resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles Machine, Standard Specification for Transportation Materials and Methods of Sampling and Testing, AASHTO, part II, pp.284-285.
AASHTO, AASHTO T89, (1998). Determining the liquid limit of soils, Standard Specification for Transportation Materials and Methods of Sampling and Testing, AASHTO, part II, pp.272-277.
AASHTO, AASHTO T90, (1998). Determining the plastic limit and plasticity index of soils, Standard Specification for Transportation Materials and Methods of Sampling and Testing, AASHTO, part II, pp. 278-279.
AASHTO,“AASHTO T104 soundness of aggregate by use of sodium sulfate or magnesium sulfate,” Standard specification for transportation materials and methods of sampling and testing, part II, Washington, D.C. (1998).
AASHTO, “AASHTO T176 plastic fines in graded aggregates and soils by use of the sand equivalent test,” Standard specification for transportation materials and methods of sampling and testing, part II, Washington, D.C.(1998).
Boyd,P.W.,“A Mesoscale Phytoplankton Bloom in the Polar Southern Ocean Stimulated by Iron Fertilization”,Nature,Vol.407,pp.695~702(2000).
Barnes, P., 「Structure and Performance of Cements」, Applied Science Publishers, N.J.(1983).
Branat; Oberholster and Westra, “The Alkali-Aggregate Reaction, A Contribution Concerning the Determination of the Reactivity of Portland Cement”, Proceeding The Fifth International Conference On Alkali-Aggregate Reaction in Concrete Cape Town (1981).
Camci, L., Aydın, S., “Utilization of integrated iron and steel works solid wastes in sponge iron production”, Proceedings of the 10th International Metallurgical and Materials Congress, Chamber of Metallurgical Engineers of Turkey, pp. 182– 194, Ankara (2000).
Caijun Shi,“Characteristics and cementitious properties of ladle slag fines from steel production”, Cement and Concrete Research 32, pp. 459-462(2002)
Chatterji, S., “An Accelerated Method for the Detection of Alkali-Aggregate Reactivities of Aggregates,” Cement and Concrete Research,Vol.8, pp.647-650(1978).
Dolar-Mantuani,“Practical aspects of identifying alkali-reactive aggregate by petrographic methods,”Proceedings of the Fourth International Conference on the Effects of Alkalies in Cement and Concrete, Cape Town,pp.267-280(1978).
Douglas A. Skoog and James J. Leary, Principal of Instrumental Analysis, Fourth Edition, Harcourt Brace Jovanovich College Publisher(1992).
Diamond, S., “A Review of Alkali-silica and Expansion Mechanisms 1. Alkali in Cements and concrete Pore Solution”,Cement and Concrete Research,Vol.5,No.4,pp.329~346(1975).
Edil, T. B., Benson, H., “Geotechnics of Industrial By-Products Recycled Materials in Geotechnical Application”,ASCE Special Publication No.79,pp.1-18(1998).
Environment Canada. A Method for the Analysis of Polychlorinated Dibenzo para Dioxins (PCDDs), Poly-chlorinated Dibenzofurans (PCDFs) and Polychlorinated Biphenyls(PCBs) in Samples from the Incineration of PCB Waste. Reference Method 1/RM/3(revised).Ottawa (1990).
Fiedler H., Hutzinger O., Timms C., Dioxins: Sources of environmental loadand human exposure. Toxicol. Environ. Chem. 29, 157-234 (1990).
Galen W. Ewing, Instrumental Methods of Chemical Analysis,Fifth Edition,McGraw-Hill Book Company,(1985).
Gillott, J. E., Duncan, M. A.G. and Swenson, E.G. “Alkali-aggregate Reaction in Nova Scotia Ⅳ Character of the Reaction”,Cement and Concrete Research,Vol.3,No.5,pp.521~535(1973).
Grattan-Bellow, P.E.,“Test Methods and Criteria for Evaluating the Potential Reactivity of Aggregates,”8th International Conference on Alkali-Aggregate Reaction,Japan,pp.279-294(1989).
Gillott, J. E., “Alkali-aggregate Reaction in Concrete”,Engineering Gelolgy,Vol.9,pp.303~326(1975).
Hobbs, D.W., “Alkali-Silica Reaction in Concrete”, Thomas, Telford, London(1988).
Hadley, D. W., “Alkali Reactivity of Carbonate Rock-Expansion and Dedolomitization”,HRB Proceeding 40, pp.462~474 (1961).
Hobbs, D.W., “Deleterious Alkali-Silica Reactivity in the Laboratory and under Field Conditions,” Magazine of Concrete Research,No.163, pp.103-112(1993).
Jawed, I., Skalny, J. and Young, J. F.,「Hydration of Portland Cement」Martin Marietta Ltd., Baltimore, Maryland, U.S.A.
Jasienska, S., Durak, J., “Effect of reduction conditions on structure and phase composition of blast furnace charge composed of alkaline sinters and acidic pellets”, Solid State Ionics117, pp.129~143,(1999).
Krivenko,P.V.,“Alkaline cements”, Proceedings of the first International Conference on Alkaline Cements and Concretes, VIPOL Stock Company, Ukraine, pp.11~ 130 ,(1994).
KuÈ hn, M., Drissen, P., Geiseler, J.,“A new BOF slag treatment technology 2.”European Oxygen Steel Making Congress from pp.13-15, October (1997).
Koide, “Research on using BOF slag for road construction,”Nakayama Steel Works Technical Report, Osaka, Japan (1993).
Lumila, S. M., Handbook of Concrete Aggregates, Noyes Publications, Park Ridge, New Jersey, USA(1983).
Lea, F.M.,「The Chemistry of Cement and Concrete」, Edward Arnold Ltd, London (1980).
Motz , H., Geiseler, J., “Products of steel slags an opportunity to save natural resources”, Waste Management 21, pp. 285-293(2001).
Mindess, S. and Young, J.F.,「Concrete」,Prentice-Hall, Inc.,Englewoad Cliffs, N.J.(1981).
Metha,P.K.,“Pozzolanic and Cementitious By-productions as Mineral Admixtures for Cement-A Critical Review”,First International Conference on the Use of Fly Ash、Silica Fume、Slag and Other Mineral By-products in Concrete,ACI SP-79,Canada,pp.1~46 (1983)。
Mikhail, S. A., Turcotte, A. M., “Thermal behaviour of basic oxygen furnace waste slag”,Thermochimica Acta 263, pp. 87-94(1995).
Nakano, K. I., S. Kobayashi, A. Nakaue and H. Ishibashi,“Influence of Alkali Content and Curing Conditions on Expansion of Mortar Bar due to ASR,”Review of the 40th General Meeting, Japan, pp.254-258(1986).
Palmer, D., “Alkali-aggregate reaction in Great Britain-the present position”,Concrete,Vol.15,No.3,pp.24~27(1981).
Powers, T. C.,「The Physical Structure and Engineering Properties of Concrete」,Research and Development Bulletin,No.90,Portland Cement Association(1958).
PrEN 1744 Tests for chemical properties of aggregates Part 3: preparation of eluates by leaching of aggregates. DIN DeutschesInstitut fuÈr Normung e.V., Berlin.
PrEN 13242. Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction DIN Deutsches Institut fuÈ r Normung e.V., Berlin.
Rappe C., Sources of PCDDs and PCDFs. Introduction: Reaction, levels, patterns, profiles and trends. Chemosphere 25, 41-4
Ramachandran, V. S., Feldman, R. F. and Beaudoin, J. J.,「Concrete Science」,Heyden & Son Ltd(1981).
Rigden, S. R., Y. Majlesi and E. Burley,“Investigation of Factors Influencing the Expansive Behavior, Compressive Strength and Modulus of Rupture of Alkali-Silica Reaction Concrete Using Laboratory Concrete Mixes,” Magazine of Concrete Research, No.170,pp.11-21(1995).
Skalny, J., Jawed, I., Taylor, H.F.W.,“Studies on Hydration of Cement-Recent Developments”World Cement Technology, Sep.(1978).
Sevinc, N., Topkaya, Y., “Utilization of solid metallurgical wastes”, Project Reports, Metallurgical and Materials Engineering Department. Middle East Technical University, Ankara, Turkey, (2001).
Swenson, E. G., A Alkali-Carbonate Rock Reaction,HRR No.45 pp.21~40(1965).
Shiu W.Y., Doucette W., Gobas F.A.P.C., Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environ. Sci. Technol. 22, 651-658 (1988).
Sandstedt, C.E., Ledbetter, W. B. and Gallaway, B. M., “Prediction of Concrete Strength From the Calculated Porosity of the Hardened Cement Paste”,ACI Journal,Vol.70,No.2,pp.115~116(1973).
Stanton, T. E., “Expansion of Concrete Through Reaction Between Cement and Aggregate”,Proc. ASCE,Vol.66,pp.1781~1811(1940).
Stanton, T. E., “Expansion of Concrete Through Reaction Between Cement and Aggregate Trans.”,ASCE,Vol.68 part2,pp.85(1942).
Swamy, R.N.,「The Alkali-Silica Reaction in Concrete」,Van Nostrand Reinhold New York,pp.1-53(1992).
Thakur, P.K., “Utilisation of steel melting slag to generate wealth from waste”, Proceedings of the Conference on Environmental Management in Metallurgical Industries. BHU, Varanasi, India, pp. 187~ 193,(2000).
Takateru Nomura, and Tsuneo Enokido, “Study on utilization of BOF slag as road base material”, Nippon Steel Technical Report17, Tokyo, Japan (1981).
Tang M., “An Investigation on mineral composition of steel slag for cement production” , Research Report, Nanjing Institute of Chemical Technology, (1973).
U.S.Army Corps of Engineers,Use of Waste Material un Pavement Construction,EngineerTechnical manual 1ETL110-3-503,Department of the Army,Washington,DC,(1999).
Wang, H., and J. Egillot, “Mechanism of Alkali-Silica Reaction and the Significance of Calcium Hydroxide,” Cement and Concrete Reseach, Vol.21, pp.647-654(1991).
Young, J. F., “Hydration of Portland Cement”, EMMSE, Materials Research Laboratory, PA(1981).
Yadav, U.S., Das, B.K., Kumar, A.,“Recovery of mineral value from integrated steel plant waste”, Proceedings of the VI Southern Hemisphere Meeting on Mineral Technology, vol. 2. CETEM, Rio de Janeiro, pp. 719~725, Brazil,(2001).
Yonezawa, T., V. Ashworth and R.T. M. Procter,“The Mechanism of fixing Cl – by Cement Hydrates Resulting in the Transformation of NaCl to Naoh,”8th International Conference on Alkli-Aggregates Reaction,Japan,pp.153-160(1989).