| 研究生: |
張道智 Chang, Tao-Chih |
|---|---|
| 論文名稱: |
Sn-9Zn-xAg系無鉛銲錫可銲性之研究 An Investigation on the Solderability of Sn-9Zn-xAg Lead-free Solders |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 216 |
| 中文關鍵詞: | 可銲性 、材料性質 、界面反應 、無鉛銲錫 、接合強度 |
| 外文關鍵詞: | Lead-free solder, Solderability, Material properties, Adhesion strength, Interfacial reaction |
| 相關次數: | 點閱:180 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Sn-9Zn合金在基材上的潤濕性不佳、易腐蝕與氧化,以及在熱處理過程中擴散型缺陷的形成均影響其在構裝製程上的可銲性。為彌補上述缺點,本研究利用添加Ag來改善Sn-9Zn合金之可銲性。
Sn-9Zn-xAg銲錫之熱性質、耐腐蝕性與耐高溫氧化性分別以差示掃描熱卡計、恆電位儀及熱重分析儀進行,銲錫與Cu基材間之潤濕性則以浸鍍法與潤濕天平評估。接合強度的量測以拉力試驗進行,並利用掃描式電子顯微鏡觀察接點破裂型態與界面上金屬間化合物之型態,其化學組成與元素分佈狀態則以能量散佈光譜儀分析。在結構的解析方面,X光繞射儀用以分析金屬間化合物的種類、晶格常數與視應變等。穿透式電子顯微鏡則用以觀察金屬間化合物的微觀型態與晶格像,並利用電子繞射分析其結構。
當銲錫中Ag的添加量為0.5 wt%時,銲錫仍保有近共晶成分,其熔解溫度為196.7°C。而Sn-9Zn-0.5Ag合金的熔解熱則為74.7 J/g,遠低於傳統之Sn-37Pb,及目前廣泛使用之Sn-3.5Ag合金。但是當銲錫中Ag的添加量高於1.5 wt%時,由於巨觀偏析,銲錫的成分偏離共晶組成。
Ag的添加可以有效提高Sn-9Zn合金之耐腐蝕性,當Ag的添加量為0.5 wt%時,銲錫的腐蝕平衡電位由-1.47提高至-1.08 VSCE。但當Ag含量提高至1.5 wt%時,由於銲錫中之AgZn3與Ag5Zn8在腐蝕試驗中溶解,銲錫的腐蝕平衡電位降低至-1.39 VSCE。當Ag含量提高至2.5與3.5 wt%時,銲錫的腐蝕平衡電位分別提高至-1.07與-0.56 VSCE。
在銲錫接點的接合強度方面,Cu基材於250°C浸鍍於Sn-37Pb合金中10 s後,可得到最大接合強度5.3 ± 0.4 MPa。當浸鍍時間提高至30 s時,接合強度則降低至3.1 ± 0.3 MPa。在相同的浸鍍條件下,Sn-9Zn/Cu介面的接合強度由3.2 ± 0.7提高至4.1 ± 0.6 MPa,較長的浸鍍時間可以有效提高Sn-9Zn/Cu的接合強度。在相同的浸鍍條件下,Sn-9Zn-0.5Ag銲錫與Cu基材間的接合強度則由4.5 ± 0.5提高至5.5 ± 0.7 MPa,說明Ag的添加可以強化銲錫與基材間的接合強度。
在金屬間化合物的解析方面,Ag的添加促使Cu6Sn5在銲後形成於Sn-9Zn-xAg/Cu界面偏銲錫處。由於Ag與Zn的溶入造成晶格擴張,此Cu6Sn5層兼具六方最密堆積結構之h相與單斜晶結構之h¢相,為一雙相結構組織。此外,體心立方結構之Cu5Zn8形成於界面偏Cu基材處,當銲錫中Ag含量提高至3.5 wt%時,Cu5Zn8由體心立方結構轉變為斜方晶結構。在熱處理的過程中,Ag由h¢-Cu6Sn5中排出,使h¢相轉變為h相,而斜方晶結構之Cu5Zn8也轉變為體心立方結構。
Sn-9Zn/Cu界面之缺陷,如Kirkendall voids或microvoids均可以藉由添加Ag抑制其形成。藉由厚度的量測,Sn-9Zn/Cu界面上之Cu5Zn8分解速率與Cu6Sn5的成長速率在180°C時分別為-2.22 × 10-9與1.67 × 10-6 m·s-1/2。在Sn-9Zn-3.5Ag/Cu界面,Cu5Zn8的分解速率與Cu6Sn5的成長速率則分別為-8.61 ´ 10-10與5.4 × 10-9 m·s-1/2,Ag的添加有助於抑制Cu5Zn8的分解與Cu6Sn5的成長。經由擴散方程式的計算,Cu與Sn在Sn-9Zn-2.5Ag/Cu界面之Cu6Sn5中的交互擴散係數為3.43 × 10-13 cm2/s,與厚度計算所得到的結果2.72 × 10-13 cm2/s相近,為Sn控制之擴散反應。
在Cu基材上預鍍薄層Ag,或添加1 wt% In於Sn-9Zn-0.5Ag合金中,均可有效強化銲錫與基材間之潤濕性與接合強度。
The disadvantages of Sn-9Zn solder alloy, such as interior wettability on substrate, low corrosion and oxidation resistance and formation of diffusional defects at solder joint as aged influence the solderability in electronic packaging process. In this study, the Ag addition is used to improve the disadvantages and enhances the solderability of Sn-9Zn solder alloy.
The thermal properties, corrosion and oxidation resistance were determined by using differential scanning calorimeter, potentiostat and thermogravimeter, respectively. The wettability between solder alloy and Cu substrate was evaluated with dipping method and wetting balance. The adhesion strength of the interface between solder alloy and Cu substrate was determined by using a pull-off tester, the fracture morphology of solder joint and morphologies of intermetallic compounds were observed with scanning electron microscope and energy dispersive spectrometer was used to analyze the chemical compositions and elemental dispersion of intermetallic compounds.
The Sn-9Zn solder alloy remains a near-eutectic composition when 0.5 wt% Ag is added, and its melting temperature is determined as 196.7°C. The fusion heat of Sn-9Zn-0.5Ag solder alloy is determined as 74.7 J/g, which is much lower than that of Sn-37Pb and Sn-3.5Ag solder alloys. When the Ag content in the Sn-9Zn solder alloy is above 1.5 wt%, the chemical composition of solder alloy deviates from the eutectic point due to macrosegregation.
The Ag addition enhances the corrosion resistance of the Sn-9Zn solder alloy significantly. The equilibrium potential of the Sn-9Zn solder alloy increases from -1.47 to -1.08 VSCE with increasing the Ag content from 0 to 0.5 wt%. However, the equilibrium potential of the solder alloy decreases to -1.39 VSCE with increasing the Ag content to 1.5 wt%, which is caused by the dissolution of AgZn3 and Ag5Zn8 in the test. When the Ag content increases to 2.5 and 3.5 wt%, the equilibrium potential of the solder alloy enhances to -1.07 and –0.56 VSCE, respectively.
For the adhesion strength, the Sn-37Pb/Cu interface shows a maximum adhesion strength of 5.3 ± 0.4 MPa after soldering at 250°C for 10 s, but it decreases to 3.1 ± 0.3 MPa with increasing the solder time to 30 s. The adhesion strength of the Sn-9Zn/Cu interface enhances from 3.2 ± 0.7 to 4.1 ± 0.6 MPa with increasing the soldering time from 10 to 30 s at 250°C, showing that a longer dipping time is beneficial to enhance the adhesion strength. At the same dipping conditions, the adhesion strength of the Sn-9Zn-0.5Ag/Cu interface increases from 4.5 ± 0.5 to 5.5 ± 0.7 MPa, indicating that the Ag addition promotes the adhesion strength of Sn-9Zn/Cu interface.
The Ag addition promotes the Cu6Sn5 layer forming at the Sn-9Zn-xAg/Cu interface close to the solder alloy. Due to the lattice expansion by the dissolution of Ag and Zn, the Cu6Sn5 is a bi-structural compound with hexagonal h phase and monoclinic h¢ phase. In addition, Cu5Zn8 layer with body-centered cubic structure is also formed at the Sn-9Zn-xAg/Cu interface close to Cu substrate. The structure of the Cu5Zn8 transforms from body-centered cubic to orthorhombic when the Ag addition is 3.5 wt%. As aged, Ag atoms are repelled from h¢-Cu6Sn5, which leads to that the h¢ transforms to h phase and the structure of the Cu5Zn8 also transforms from orthorhombic to body-centered cubic.
The formation of defects at the Sn-9Zn/Cu interface, such as Kirkendall voids and microvoids can be inhibited by Ag addition and the solder joint reliability is not deteriorated due to the formation of defects as aged. The growth rate of intermetallic compound affects the solder joint reliability dramatically. By the estimation for thickness, the decomposition rate of the Cu5Zn8 and growth rate of the Cu6Sn5 at the Sn-9Zn/Cu interface at 180°C are determined as -1.67 × 10-6 and 6.80 × 10-10 m·s-1/2, respectively. At the Sn-9Zn-3.5Ag/Cu interface, the decomposition rate of the Cu5Zn8 and growth rate of the Cu6Sn5 are determined as -8.61 ´ 10-10 and 5.4 × 10-9 m·s-1/2, respectively, showing that the Ag addition inhibits the decomposition of Cu5Zn8 and the growth of Cu6Sn5 layer. By calculation with diffusion equation, the interdiffusion coefficient of Cu and Sn in the Cu6Sn5 layer is determined as 3.43 × 10-13 cm2/s, which is close to that determined by thickness estimation.
Precoating an Ag thin layer on Cu substrate or adding 1 wt% In to the Sn-9Zn-0.5Ag solder alloy can enhance the wettability and adhesion strength between solder alloy and substrate.
1. H.H. Manko, Solder and Soldering, 2nd Edition, McGraw-Hill, New York, 1979.
2. M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27 (2000) 95.
3. ASM International, Electronic Materials Handbook, Vol. 1, Packaging, Materials Park, OH, 1989, p. 55.
4. T.P. Vianco, Development of alternatives to lead-bearing solders, in Proceedings of the Technical Program on Surface Mount International, 19 August – 2 September 1993, San Jose, CA.
5. R.E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, Massachusetts, 1994, p. 306.
6. K.J.R. Wassink and M.M.F. Verguld, Manufacturing Techniques for Surface Mount Assembly, Electrochemical Publications Ltd., 1995, GB-Port Erin, British Isles, p. 17.
7. J. Glazer, Int. Mater. Rev. 40 (1995) 67.
8. W.R. Lewis, Notes of Soldering, Tin Research Institute, 1961, p. 66.
9. Electronic Material Handbook, ASM International, Vol. 1, Materials Park, OH, 1989, p. 1161.
10. M. McCormack and S. Jin, J. Electron. Mater. 23 (1994) 715.
11. J.W. Morris Jr., J.L.F. Goldstein and Z. Mei, J. Electronic. Mater. 23 (1993) 25.
12. R.W. Wild, Properties of Some Low Melting Fusible Alloys, Technical Report, IBM Federal Systems Division Laboratory, New York, 1971.
13. M. McCormack, S. Jin, G.W. Kammlott and H.S. Chen, Appl. Phys. Lett. 63 (1993) 15.
14. Z. Mei and J.W. Morris Jr., J. Electron. Mater. 21 (1992) 401.
15. J. Seyyedi, Soldering Surf. Mount Technol. 13 (1993) 26.
16. K.N. Tu, Mater. Phys. Chem. 46 (1996) 217.
17. M. Inaba, Y. Honma, K. Teshima, O. Hirao and T. Sakurai, J. Jpn. Instit. Metals, 48 (1984) 863.
18. D.S. Dunn, T.F. Marinis, W.M. Sherry and C.J. Williams, Mater. Res. Soc. Symp. Proc. 40 (1985) 217.
19. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, 1958, p. 1218.
20. B.J. Lee, N.M. Hwang and H.M. Lee, Acta Mater. 45 (1997) 1867.
21. S.P. Yu, M.C. Wang and M.H. Hon, J. Mater. Sci.: Mater. in Electron. 11 (2000) 461.
22. K. Suganuma, K. Niihata, T. Shoutoku and Y. Nakamura, J. Mater. Res. 13 (1998) 2859.
23. S.H. Huh, K.S. Kim and K. Suganuma, Maters. Trans. 42 (2001) 739.
24. J. Cannis, Adv. Packaging, 8 (2001) 31.
25. W.A. Mulholland and D.L. Willyard, Weld. Res. 54 (1974) 466s.
26. H.P. Kehrer and E.W. Wenzel, Metall. 30 (1979) 1047.
27. K.N. Tu, A.M. Gusak and M. Li, J. Appl. Phys. 93 (2003) 1335.
28. G.T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong and L. Nguyen, J. Appl. Phys. 92 (2002) 64.
29. Y. Kariya, C. Gagg and W.J. Plumbridge, Solder Surf. Mount Tech. 13 (2001) 39.
30. K. Puttlitz and P.A. Totta, Area Array Interconnection Handbook, Kluwer Academic, Boston, MA, 2001.
31. D.R. Frear, J.R. Michael and P.F. Hlava, J. Electron. Mater. 23 (1994) 735.
32. R.A. Deighan, Int. J. Hybrid Electron. 5 (1982) 307.
33. M.A. Carroll and M.E. Warwick, Mater. Sci. Technol. 3 (1987) 1040.
34. K. Suganuma, T. Murata, H. Noguchi and Y. Toyoda, J. Mater. Res. 15 (2000) 884.
35. I. Shohji, T. Nakamura, F. Mori and S. Fujiuchi, Mater. Trans. 43 (2002) 1797.
36. S.P. Yu, C.L. Liao, M.H. Hon and M.C. Wang, J. Mater. Sci. 35 (2000) 4217.
37. C.M.L. Wu, D.Q. Yu, C.M.T. Law and L. Wang, J. Electron. Mater. 31 (2002) 921.
38. K.L. Lin, F.C. Chung and T.P. Liu, Mater. Chem. Phys. 53 (1998) 55.
39. K.L. Lin and T.P. Liu, Mater. Chem. Phys. 56 (1998) 171.
40. S.P. Yu, M.H. Hon and M.C. Wang, J. Electron. Mater. 29 (2000) 237.
41. S.P. Yu, M.C. Wang and M.H. Hon, J. Mater. Res. 16 (2001) 76.
42. T. Takemoto, T. Funaki and A. Matsunawa, J. Japan Welding Society, 17 (1999) 251.
43. K.L. Lin and C.L. Shih, J. Electron. Mater. 32 (2003) 95.
44. J.M. Song, G.F. Lan, T.S. Lui and L.H. Chen, Scripta Mater. 48 (2003) 1047.
45. Y.L. Tsai, W.S. Hwang and H.S. Wang, Chinese Journal of Materials Science, 34 (2002) 135.
46. T.F. Wu, T.P. Cheng and W.T. Tsai, J. Nuclear Mater. 295 (2001) 233.
47. P.G. Harris and K.S. Chaggar, Soldering & Surface Mount Technology, 10 (1998) 38.
48. T.C. Chang, M.C. Wang and M.H. Hon, Mater. Trans. 45 (2004) 1.
49. S.W. Chen, C.C. Lin and C.M. Chen, Metall. Mater. Trans. 29A (1998) 1965.
50. P.T. Vianco and J.A. Rejent, J. Electron. Mater. 28 (1999) 1127.
51. M. E. Brown, Introduction to Thermal Analysis, (Chapman and Hall, New York, 1988), p. 33.
52. W. WM. Wendlandt, Thermal Analysis, (Wiley, New York, 1986, 3rd edition), p. 271.
53. Tech. Inform. Sheet No. 15, Stanton Redcroft Ltd., London.
54. T.C. Chang, S.M. Chou, M.H. Hon and M.C. Wang, J. Adhesion Science and Technology, (in press).
55. T.C. Chang, M.C. Wang and M.H. Hon, Metall. Mater. Trans. (in press)
56. Y.L. Tsai, W.S. Hwang and H.S. Wang, Chinese J. Mater. Sci. Eng. 34 (2002) 135.
57. K.L. Lin, F.C. Chung and T.P. Liu, Mater. Chem. Phys. 53 (1998) 55.
58. S.H. Huh, K.S. Kim and K. Suganuma, Maters. Trans. 42 (2001) 739.
59. T.C. Chang, M.H. Hon and M.C. Wang, J. Alloys and Compounds, 352 (2003) 168.
60. J.W. Osenbach, Semicond. Sci. Technol. 11 (1996) 155.
61. K.L. Lin, F.C. Chung and T.P. Liu, Mater. Chem. Phys. 53 (1998) 55.
62. K.L. Lin and T.P. Liu, Mater. Chem. Phys. 56 (1998) 171.
63. M. Mori, K. Miura, T. Sasaki and T. Ohtsuka, Corr. Sci. 44 (2002) 887.
64. T.C. Chang, M.H. Hon and M.C. Wang, J. Electrochem. Soc. (in press)
65. J.C. Lin and H.C. Shih, J. Electrochem. Soc. 134 (1987) 817.
66. C.T. Lynch, “CRC Handbook of Materials Science II”, CRC Press Inc., Boca Raton, Florida, USA, p. 399.
67. C. Kanchanomai, Y. Miyashita and Y. Mutoh, Int. J. Fatigue, 24 (2002) 671.
68. K. Nisancioğlu, J. Electrochem. Soc. 137 (1990) 69.
69. C.T. Lynch, “CRC Handbook of Materials Science I”, CRC Press Inc., Boca Raton, Florida, USA, p. 169.
70. A. Barbucci, G. Gerisola, G. Bruzzone and A. Saccone, Electrochimica Acta, 42 (1997) 2369.
71. R.G. Buchheit, R.P. Grant, P.F. Hlava, B. Mckenzie and G.L. Zender, J. Electrochem. Soc. 144 (1997) 2621.
72. N. Lopez, M. Cid and M. Puiggali, Corr. Sci. 41 (1999) 1615.
73. A.G. Muñoz and J.B. Bessone, Corr. Sci. 41 (1999) 1447.
74. A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano and M. Marcos, Corr. Sci. 43 (2001) 1657.
75. R.F. Steigerwald, Corrosion, 33 (1977) 338.
76. M. Windholz, S. Budavali, R.F. Blumetti and E.S. Otterbein, Merck Index, 10th edition, Merck, 1983, p. 1257.
77. J.H. Vincent and B.P. Richards, Alternative solder for electronic assemblies, Circuit World, 19 (1993) 33.
78. R. Grauer, Werkstoffe and Korrosion, 31 (1980) 837.
79. S. Vaynman and M.E. Fine, J. Electron. Mater. 29 (2000) 1160.
80. X.W. Liu and W.J. Plumbridge, J. Electron. Mater. 32 (2003) 278.
81. T.C. Chang, M.H. Hon and M.C. Wang, Mater. Res. Bull. 35 (2003) 901.
82. S. Kikuchi, M. Nishimura, K. Suetsugu, T. Ikari and K. Matsushige, Mater. Sci. Eng. A319-321 (2001) 475.
83. T.C. Chang, M.C. Wang and M.H. Hon, J. Electron. Mater. 32 (2003) 516.
84. T.C. Chang, M.C. Wang and M.H. Hon, J. Crystal Growth, 252 (2003) 401.
85. H.T. Lee and M.H. Chen, Mater. Sci. Eng. A333 (2002) 24.
86. K. Suganuma and Y. Nakamura, J. Japan Inst. Metals, 59 (1995) 1299.
87. D.R. Frear, S.N. Burchett, H.S. Morgan and J.H. Lau, “The Mechanics of Solder Alloy Interconnects”, Van Nostrand Reinhold, New York, p. 62 (1994).
88. Y. Wu, J. A. Sees, C. Pouraghabagher, L. A. Foster, J. L. Marshall, E. G. Jacobs, and R. F. Pinizzotto, J. Electron. Mater. 22 (1993) 769.
89. S.C. Cheng and K.L. Lin, J. Electron. Mater. 31(2002) 940.
90. T.C. Chang, M.C. Wang and M.H. Hon, J. Crystal Growth, 252 (2003) 391.
91. Z. Mei, A.J. Sunwoo and J.W. Morris, Jr., Metall. Mater. Trans. 23A (1992) 857.
92. A.J. Sunwoo, J.W. Morris, Jr. and G.K. Lucey, Jr., Metall. Mater. Trans. 23A (1992) 1323.
93. S. Chada, R. A. Fournelle, W. Laub and D. Shangguan, J. Electron. Mater. 29 (2000) 1214.
94. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed., (Addison-Wesley Publishing Company, 1978), p. 87.
95. A.K. Larsson, L. Stenberg and S. Lidin, Acta Crystallogr., Sec. B: Structural Science, 50 (1994) 636.
96. B. Peplinski, Mater. Forum, 166 (1994) 443.
97. Y. Avrahami, D. Shilo, N. Mainzer and E. Zolotoyabko, J. Crystal Growth, 198/199 (1999) 264.
98. R. Feder, M. Mooney and A.S. Nowick, Acta Metall. 6 (1958) 266.
99. R. Hultgren, P. D. Desai, D. T Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, (American Society for Metals, Metals Park, Ohio, 1973) p. 810.
100. R. Hultgren, P. D. Desai, D. T Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, (American Society for Metals, Metals Park, Ohio, 1973) p. 795.
101. R. Hultgren, P. D. Desai, D. T Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, (American Society for Metals, Metals Park, Ohio, 1973) p. 103.
102. K.N. Tu, F. Ku and T.Y. Lee, J. Electron. Mater. 30 (2001) 1129-1132.
103. H.K. Kim and K.N. Tu, Phys. Rev. B, 53 (1996) 16027.
104. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng and J.K. Kivilahti, J. Mater. Res. 17 (2002) 291.
105. J.W. Jang, P.G. Kim, K.N. Tu and M. Lee, J. Mater. Res. 14 (1999) 3895.
106. A. Westgren and G. Phrahmen, Z. Anorg. Chem. 175 (1926) 80.
107. J.D. Bernal, Nature, 122 (1928) 54.
108. A. Gangulee, G. C. Das and M. B. Bever, Metall. Trans. 4 (1973) 2063.
109. P. T. Vianco, K. L. Erickson and P. L. Hopkins, J. Electron. Mater. 23 (1994) 721.
110. C. Fairhurst and J. Cohen, J. Acta Crystallogr. Sec. B, 28 (1972) 371.
111. T.C. Chang, M.C. Wang and M.H. Hon, Metall. Mater. Trans. (in review)
112. K.N. Tu, Acta Metall. 21 (1973) 347.
113. K.I. Chen and K.L. Lin, J. Electron. Mater. 31(2002) 861.
114. D.S. Williams, R.A. Rapp and J.P. Hirth, Metall. Mater. Trans. 12A (1981) 639.
115. T.C. Chang, M.H. Hon and M.C. Wang, Electrochem. Solid-State Letters, 6 (6) (2003) C82.
116. S. V. Dyck, L. Delaey, L. Froyen and L. Buekenhout, Acta Mater. 46 (1998) 2831.
117. J.R. Lince, M.R. Hilton and A.S. Bommannavar, Thin Solid Films, 264 (1995) 120.
118. A.R. Stokes and A.J.C. Wilson, Proc. Phys. Soc. 56 (1944) 174.
119. W. Huang, J.M. Loman and B. Sener, Microelectronics Reliability, 42 (2002) 1229.
120. K.N. Tu, Phys. Rev. B, 49 (1994) 2030.
121. P.P. Macri, P. Rose, D.E. Banda, N. Cowlam, G. Principi, S. Enzo, Mater. Sci. Forum, 179 (1995) 249.
122. T. Hirsch, F. Hoffmann and P. Mayr, Surface Eng. 14 (1998) 481.
123. J.H. Lee and Y.S. Kim, J. Electron. Mater. 31 (2002) 576.
124. H. Kuwano, H. Morita and T. Ishigaki, J. Jpn. Soc. Powder and Powder Metall., 42 (1995) 651.
125. Z.Y. Liu, L.X. Hu and E.D. Wang, Mater. Sci. Eng. A, 255 (1998) 16.
126. T. Dobra, R. Orban, D. Bota, N. Jumate and P. Galfi, Int. Conf. Powder Metall. (Romania, 1996) 245.
127. T.C. Chang, M.H. Hon and M.C. Wang, J. Crystal Growth, 250 (1-2) (2003) 236-243.
128. S. Ahat, M. Sheng and L. Luo, J. Electron. Mater. 30 (10) (2001) 1317.
129. K.S. Bae and S.J. Kim, J. Mater. Res. 17 (2002) 743.
130. G.L. Bailey and H.C. Watkins, J. Inst. Metal. 80 (1951) 57.
131. J. Sigelko, S. Choi, K.N. Subramanian, J.P. Lucas and T.R. Bieler, J. Electron. Mater. 28 (1999) 1184.
132. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng and J.K. Kivilahti, J. Mater. Res. 17 (2002) 291.
133. T.C. Chang, M.C. Wang and M.H. Hon, Electrochem. Solid-State Letters, 7 (2004) J4-J8.
134. K. Shimano, N. Sato and S. Takahashi, Proc. 6th Symposium on Microjoining and Assembly Technology in Electronics, (The Japan Welding Society, 2000), p. 884.
135. K.S. Kim, T.S. Kim, C.W. Hwang, S.H. Huh, K. Suganuma and H. Nakajima, Proc. 11th Micro Electronic Symposium (Japan Institute of Electronics Packaging, 2001), p. 255.
136. T.C. Chang, M.C. Wang and M.H. Hon, J. Crystal Growth, 263 (2004) 223.
137. P. Shewmon, “Diffusion in Solids”, a publication of The Minerals, Metals & Materials Society, Pennsylvania, 1989, p. 183.
138. T.C. Chang, M.C. Wang and M.H. Hon, IEEE Advanced Packaging, (in press)
139. W. Yang, R.W. Messler, Jr. and L.E. Felton, J. Electron. Mater. 23 (1994) 765.
140. H.L.J. Pang, K.H. Tan, X.Q. Shi and Z.P. Wang, Mater. Sci. Eng. A307 (2001) 42.
141. T.C. Chang, M.C. Wang and M.H. Hon, Electrochem. Solid-State Letter (in review).
142. J.S. Kirkaldy and D.J. Young, Diffusion in the Condensed State, Institute of Metals, p. 44.
143. Y.G. Lee and J.G. Duh, J. Mater. Sci. 33 (1998) 5569.
144. P. Shewmon, Diffusion in Solid, a publication of The Minerals, Metals & Materials Society, Pennsylvania, 1989, p. 19.
145. H. Zhang and H. Wong, Acta Mater. 48 (2000) 1371.
146. K.L. Erickson, P.L. Hopkins and P.T. Vianco, J. Electron. Mater. 23, (1994) 729.
147. K.N. Tu and R.D. Thompson, Acta Metall. 30 (1982) 947.
148. Y. Wu, J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs and R.F. Pinizzotto, J. Electron. Mater. 22 (1993) 769.
149. X.W. Liu and W.J. Plumbridge, J. Electron. Mater. 32 (2003) 278.
150. B.S. Chiou, J.H. Chang and J.G. Duh, IEEE Trans-CPMT-B, 18 (1995) 537.
151. C.T. Lynch, “CRC Handbook of Materials Science”, CRC Press Inc. Florida, 1974, p. 64.
152. C. Kanchanomai, Y. Miyashita and Y. Mutoh, Int. J. Fatigue, 24 (2002) 671.
153. H.M. Lee, S.W. Yoon and B.J. Lee, J. Electron. Mater. 27 (1998) 1161.
154. P.J. Kay and C.A. Mackay, Trans. Inst. Metal Fin. 57 (1979) 169.
155. J. Haimovich, Weld. Res. Supplement, 27 (1989) 102s.
156. S. Ahat, M. Sheng and L. Luo, J. Mater. Res. 16 (2001) 2914.
157. T.C. Chang, Y.T. Hsu, M.C. Wang and M.H. Hon, J. Alloys and Compounds, 360 (2003) 217.
158. W. Yang, L.E. Felton and R.W. Messler, Jr., J. Electron. Mater. 24 (1995) 1465.
159. X. Ma, Y. Qian and F. Yoshida, J. Alloys and Compounds, 334 (2002) 224.
160. M.S. Yeh, J. Electron. Mater. 31 (2002) 953.
161. T.C. Chang, M.H. Hon and M.C. Wang, J. Electron. Mater. (in review)
162. J. Forman, R. Riesen and M. Schubnell, American Laboratory, January (2001) 40.
163. C. Beddingfield and L.M. Higgins, IEEE Trans. on CPMT Part C, 21 (1998) 189.
164. M. Bixenaman and E. Miller, Pro. 5th Int. Joint Symp. on Microelec. And Packaging, Seoul, Korea, (2000) p. 43.
165. H. Tanaka, F. Ueta, S. Yoshihara and T. Shirakashi, Mater. Trans. 42 (2001) 2003.
166. S.M. Hong, C.S. Kang and J.P. Jung, Mater. Trans. 43 (2002) 1336.
167. C.C. Lee and S. Choe, Mater. Sci. Eng. A333 (2002) 45.
168. J.W. Han, H.G. Lee and J.Y. Park, Mater. Trans. 43 (2002) 1816.
169. C.M.L. Wu, C.M.T. Law, D.Q. Yu and L. Wang, J. Electron. Mater. 32 (2003) 63.
170. T. Takemoto and M. Miyazaki, Mater. Trans. 42 (2001) 745.
171. R.J.K. Wassink, Soldering in Electronics, 2nd ed., Electrochemical Publications Limited, Scotland, 1989, p. 49.
172. M.K. Choi, C.Y. Lee and C.J. Shur, J. Electron. Manuf. 8 (1998) 235.
173. H.Y. Chang, D.S.H. Wong and H.F. Hsu, J. Mater. Res. 18 (2003) 1420.
174. T.C. Chang, M.H. Hon and M.C. Wang, J. Electron. Mater. (in review)
175. A. S. Zuruzi, C. H. Chiu, S. K. Lahiri and K. N. Tu, J. Appl. Phys. 86 (1999) 4916.
176. K. N. Tu, T. Y. Lee, J. W. Wang, L. Li, D. R. Frear, K. Zeng and J. K. Kivilahti, J. Appl. Phys. 89 (2001) 4843.