簡易檢索 / 詳目顯示

研究生: 蘇愷翎
Su, Kai-Ling
論文名稱: 二氧化矽奈米粒子薄膜之製備及其抗反射/超親水/超疏水特性之探討
Fabrication of SiO2 Nanoparticulate Thin Films with Antireflective/Superhydrophilic/Superhydrophobic Properties
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 64
中文關鍵詞: 自潔表面二氧化矽奈米粒子聚電解質超疏水性靜電逐層組裝自組裝單分子層抗反射超親水性
外文關鍵詞: polyelectrolyte, self-cleaning, electrostatic layer-by-layer assembly, antireflection, superhydrophobicity, self-assembled monolayer, superhydrophilicity, SiO2 nanoparticles
相關次數: 點閱:109下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於製備同時具有超疏水自潔及抗反射性質的奈米粒子薄膜。運用靜電吸附機制,以浸鍍機在玻璃基板上交替地逐層組裝帶正電荷的聚電解質和帶負電荷的雙尺寸二氧化矽奈米粒子。藉由控制奈米粒子的浸鍍時間及沉積層數,使表面達到足夠的粗糙度,經煅燒,再配合矽烷自組裝單分子層技術,製作出透明的超疏水薄膜,有別以往只具有超疏水自潔但不透明的薄膜。實驗結果顯示,薄膜的平均穿透度及接觸角遲滯會隨層數以及奈米粒子浸鍍時間的增加而減小,但是接觸角則會隨層數以及奈米粒子浸鍍時間的增加而增大。最適化的沉積條件為浸鍍時間15分鐘,沉積層數30層。此外,奈米粒子薄膜在自組裝矽烷單分子層之前,具有超親水性,因此,也提供了透明表面上超親水/超疏水圖案化的可能性。本研究也製作單一尺寸之奈米粒子薄膜作為比較,發現單一尺寸的奈米粒子薄膜在多功能特性的表現上,不及雙尺寸奈米粒子薄膜。

    Self-cleaning and antireflective properties were combined and improved by arranging two-sized silica nanoparticles into structures on glass substrates by electrostatic layer-by-layer assembly in this work. Poly(allylamine hydrochloride) and negatively charged two-sizes SiO2 nanoparticles are assembled sequentially by using a dip coater. Surface roughness required for superhydrophobicity has been achieved by controlling the dipping time and bilayer number. A transparent superhydrophobic film was finally created by calcinations and surface silanization. The experimental results indicated that both light transmittance and contact angle hysteresis decrease with the increase of the dipping time and bilayer number on one hand, the contact angle increases with the increasing of dipping time and bilayer number on the other hand. An optimal assembly condition was found to be 15 min dipping time and 30 bilayers. Furthermore, the assembled films were found to exhibit superhydrophilicity before surface silanization. This assembly process, therefore, has a potential utilization for creating patterned superhydrophobic/superhydrophilic surfaces. One-sized nanoparticle films were also studied and found to be less efficient in achieving the desirable multifunctional properties.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 抗反射光學效應 3 2.1.1 破壞性干涉機制 3 2.1.2 漸變折射率機制 4 2.1.3 抗反射光學薄膜之製作 4 2.2 超疏水表面 5 2.3 粒子薄膜組裝 6 2.3.1 靜電逐層組裝技術 6 2.3.2 靜電逐層組裝技術之應用 7 2.4 表面改質 8 2.5 固體基板的潤濕性 9 2.6 接觸角的量測 10 2.7 接觸角之影響因素 10 第三章 實驗 13 3.1 藥品 13 3.2 儀器 14 3.2.1 浸鍍機(機械手臂) 14 3.2.2 雷射光散射法粒徑測定儀 14 3.2.3 掃瞄式電子顯微鏡(Scanning Electron Microscope) 15 3.2.4 動態接觸角分析儀(Dynamic Contact Angle Analyzer) 16 3.2.5 靜態接觸角測量儀(Static Contact Angle Analyzer) 17 3.2.6 紫外光-可見光( UV-vis)光譜儀 17 3.2.7 高溫爐 18 3.2.8 Mili-Q超純水系統 18 3.3 實驗方法 18 3.3.1 聚電解質溶液的配製 18 3.3.2 SiO2膠體溶液的配製 19 3.3.3 玻璃基板的清洗及帶電 19 3.3.4 聚電解質多層膜及聚電解質/ SiO2混成薄膜的製備:靜電逐層組裝技術 19 3.3.5 粒子薄膜表面的疏水改質 20 3.3.6 動態接觸角量測 20 3.3.7 穿透度量測 21 第四章 結果與討論 22 4.1 層數對單一尺寸之SiO2奈米粒子薄膜穿透度及潤濕性的影響 22 4.2 粒徑對單一尺寸之SiO2奈米粒子薄膜穿透度及潤濕性的影響 23 4.3 浸鍍時間對雙尺寸之SiO2奈米粒子薄膜穿透度及潤濕性的影響 24 4.4 層數對雙尺寸之SiO2奈米粒子薄膜穿透度及潤濕性的影響 25 4.5 最適化組裝條件的選擇 26 4.6 單一尺寸與雙尺寸的SiO2奈米粒子薄膜之特性比較 26 第五章 結論與建議 57 5.1 結論 57 5.2 建議 58 參考文獻 59 自述 64

    Adamson, A. W., “Physical Chemistry of Surfaces” 6th edition, Wiley, New York, P362, 1997.
    Ariga, K., Lvov, Y. and Kunitake, T., “Assembling Alternate Dye-Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption,” J. Am. Chem. Soc., 119, 2224, 1997b.
    Ball, P., “Engineering Shark Skin and Other Solutions” Nature 400, 507, 1999.
    Barthlott, W. and Neinhuis, C., “Purity of The Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, 202, 1-8, 1997.
    Bliznynuk, V. N. and Tsukruk, V. V., “Composite Self-Assembled Films from Charged Latex Nanoparticles.” Polym. Prepr. Am. Chem. Soc. Polym. Chem. Div., 38, 1, 963, 1997.
    Bravo, J., Zhai, L., Wu, Z., Cohen, R. E. and Rubner, M. F., “Transparent Superhydrophobic Films Based on Silica Nanoparticles,” Langmuir 2007.
    Cebeci, F. C., Wu, Z., Zhai, L., Cohen, R. E. and Rubner, M. F., “Nanoporosity-Driven Superhydrophilicity:A Means to Create Multifunctional Antifogging Coatings,” Langmuir , 22, 2856-2862, 2006.
    Chen, L. J., Tsai, Y. H., Liu, C. S., Chiou, D. R. and Yeh, M. C., “Effect of Water Content in Solvent on The Critical Temperature in The Formation of Self-Assembled Hexadecyltrichlorosilane Monolayers on Mica” Chemical Physics Letters 346, 241, 2001.
    Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J. and McCarthy, T. J., “Ultrahydrophobic and Ultralyophobic Surface : Some Comments and Examples” Langmuir 15, 3395, 1999.
    Dinguo, C. (YTC America Inc), Yongan, Y., Enrico, W., Dan, N. and Norikazu, S., “Development of Anti-Reflection (AR) Coating on Plastic Panels for Display Applications,” Journal of Sol-Gel Science and Technology, 19, 77, 2000.
    Feng, L., Li, S., Li, H., Zhai, J., Song, Y., Jiang, L. and Zhu, D., “Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers” Angew. Chem. Int. Ed. 41, 1221, 2002a.
    Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B, Jiang, L. and Zhu, D., “Super-Hydrophobic Surfaces: from Natural to Artificial” Adv. Mater. 14, 1857, 2002b.
    Fulda, K. U., Kampes, A., Krasemann, L. and Tieke, B., “Self-Assembled Mono- and Multilayers of Monodisperse Cationic and Anionic Latex Particles,” Thin Solid Films, 327-329, 752, 1998.
    Hiller, J.-A., Mendelsohn, J. D. and Rubner, M. F., “Reversibly Erasable Nanoporous Anti-Reflection Coatings from Polyelectrolyte Multilayers,” Nature Materials, 1, 59-63, 2002.
    Ishihara, Y., Hirai, T., Sakurai, C., Koyanagi, T., Nishida, H., and Komatsu, M., “Applications of The Particle Ordering Technique for Conductive Anti-Reflection Films,” Thin Solid Films, 411, 50-55, 2002.
    Jesionowski, T. and Krysztafkiewicz, A., “Influence of Silane Coupling Agents on Surface Properties of Precipitated Silicas” Applied Surface Science 172, 18, 2001.
    Kotov, N. A., Dékány, I. and Fendler, J. H., “Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films,” J. Phys. Chem., 99, 13065, 1995.
    Krasnoslobodtsev, A. V. and Smirnov, S. N., “Effect of Water on Silanization of Silica by Trimethoxysilanes” Langmuir 18, 3181, 2002.
    Lander, L. M., Siewierski, L. M., Brittain, W. J., Vogler, E. A., “A Systematic Comparison of Contact Angle Methods” Langmuir 9, 2237, 1993.
    Li, S., Li, H., Wang, X., Song, Y., Liu, Y., Jiang, L., Zhu, D., “Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes” J. Phys. Chem. B 106, 9274, 2002.
    Lvov, Y., Ariga, K., Onda, M., Ichinose, I. and Kunitake, T., “Alternate Assembly of Ordered Multilayers of SiO2 and Other Nanoparticles and Polyions,” Langmuir, 13, 6195, 1997.
    McGovern, M. E., Kallury, K. M. R. and Thompson, M., “Role of Solvent on The Silanization of Glass with Octadecyltrichlorosilane” Langmuir 10, 3607, 1994.
    Patankar, N. A., “Mimicking the Lotus Effect: Influence of Double Plueddeman, E. P. “Silane coupling agents” Plenum Press: New York, 1991.
    Patankar, N. A., “Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars,” Langmuir , 20, 8209-8213, 2004.
    Seebergh, J. E. and Berg, J. C., “A Comparison of Force and Optical Techniques for The Measurement of Dynamic Contact Angles” Chem. Eng. Sci. 47, 4468, 1992.
    Shiu, J. Y., Kuo, C. W., Chen, P. and Mou, C. Y., “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography” Chem. Mater. 16, 561, 2004.
    Sun, Y., Hao, E., Zhang, X., Yang, B., Gao, M. and Shen, J., “Monolayer of TiO2/PbS Coupled Semiconductor Nanoparticles,” Chem. Commun., 2381, 1996.
    Sun, Y., Hao, E., Zhang, X., Yang, B., Shen, J., Chi, L. and Fuchs, H., “Buildup of Composite Films Containing TiO2/PbS Nanoparticles and Polyelectrolytes Based on Electrostatic Interaction,” Langmuir, 13, 5168, 1997.
    Uyama, Y., Inoue, H., Ito, K., Kishida, A. and Ikada, Y., “Comparison of Different Methods for Contact Angle Measurement” J. Colloid Interface Sci. 141, 275, 1991.
    Vallant, T., Kattner, J., Brunner, H. and Hoffmann, H., “Investigation of The Formation and Structure of Self-Assembled Alkylsiloxane Monolayers on Silicon Using in Situ Attenuated Total Reflection Infrared Spectroscopy” Langmuir 15, 5339, 1999.
    Vansant, E. F., Van Der Voort, P. and Vrancken, K. C., “Characterization and Chemical Modification of the Silica Surface” Elsevier: Amsterdam, 1995.
    Walheim, S., Schäffer, E., Mlynek, J. and Steiner, U., “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science, 283, 520-522, 1999.
    Wang, D., Caruso, R. A. and Caruso, F., “Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres- A Novel Route to Tune Pore Morphology,” Chem. Mater., 13, 364, 2001.
    Wang, D., Rogach, A. L. and Caruso, F., “Composite Photonic Crystals from Semiconductor Nanocrystal/Polyelectrolyte-Coated Colloidal Spheres,” Chem. Mater., 15, 2724, 2003.
    Yonezawa, T., Onoue, S. and Kunitake, T., “Growth of Closely Packed Layers of Gold Nanoparticles on an Aligned Ammonium Surface,” Adv. Mater., 10, 5, 414, 1998.
    Zhai, L., Cebeci, F. C., Cohen, R. E. and Rubner, M. F., “Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers,” Nano Letters , 4, 1349-1353, 2004.
    Zhang, X. T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T. and Fujishima, A., “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater., 17, 696, 2005.

    下載圖示 校內:2008-07-10公開
    校外:2008-07-10公開
    QR CODE