簡易檢索 / 詳目顯示

研究生: 莊欽智
Zhaung, Qin-Zhi
論文名稱: 運用暗態實現光子傳輸
Photonic transport via dark state
指導教授: 張為民
Zhang, Wei-Min
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 46
中文關鍵詞: 暗態開放量子系統光機電混合系統主方程量子態傳輸
外文關鍵詞: hybrid electro-optomechanical system, dark state, open quantum system, state transport
相關次數: 點閱:121下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們精確地導出了光機電混合系統(hybrid electro-optomechanical system)在非馬可夫環境下的主方程,並且利用這個系統來實現量子態的傳輸。在文中,我們介紹了目前為止所被提出的三種量子傳輸方法,藉由我們所導出的精確主方程,研究和討論了在這三種方法下量子傳輸的效率。我們發現在非馬可夫效應下,暗態(mechanically dark mode)依然可以達到保護量子傳輸的效果。另外,我們也檢驗了Ying-Dan Wang和Aashish A. Clerk在2012年所提出的論點,亦即「混合傳輸法(hybrid transfer scheme)幾乎不受機械震盪器的初始熱粒子數影響」。透過我們的數值分析發現,這個論點只有在極低溫時才會成立,當溫度升高,初始熱粒子所造成的影響就會愈來愈明顯。

    We studied a hybrid electro-optomechanical system under non-Markovian environment and discuss
    the delities of state transfer between two cavities through the mechanical resonator in
    adiabatic passage scheme and hybrid transfer scheme, both of which utilize the mechanically
    dark mode. We found that the mechanically dark mode really can protect the state transfer
    from mechanically thermal noise. Furthermore, we also inspect the argument Wang and Clerk
    made in 2012, namely the hybrid transfer scheme is almost completely insensitive to any initial
    thermal population in the mechanical resonator. Our exact results show that this argument
    is valid only in a very low temperature. When the temperature raises, the di erence of state
    transfer delity with and without precooling becomes more and more conspicuous.

    1 Introduction 4 1.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Modeling of the Hybrid EOMS 7 3 Exact Master Equation 14 3.1 Feynman-Vernon in uence functional in coherent-state Representation . . . . . . 14 3.2 Partial Reduced Density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 The Master Equations of the EO Cavity and the Microwave Cavity . . . . 20 3.3 Wigner function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Photonic state Transfer 25 4.1 Double swap protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Adiabatic passage scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Hybrid transfer scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 Fidelity of State transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 Non-Markovian e ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5.1 Adiabatic passage scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5.2 Hybrid transfer scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Conclusion 41 6 Bibliography 42

    [1] P. Lebedev, Ann. Phys. (Leipzig) 6,433 (1901); Astrophys. J. 31, 385 (1910).
    [2] E. F. Nichols and G. F. Hull, Phys. Rev. 13, 307 (1901); 17, 26 (1903).
    [3] A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure", Phys. Rev.
    Lett. 24, 156 (1970).
    [4] A. Ashkin and J. M. Dziedzic,"Optical Levitation by Radiation Pressure", Appl. Phys.
    Lett. 19, 283 (1971); 24, 586 (1974); 28, 333 (1976); 30, 202 (1977).
    [5] K. J. Vahala, "Optical microcavities", Nature 424, 839 (2003).
    [6] H. G. Craighead, "Nanoelectromechanical Systems", Science 290, 1532 (2000).
    [7] K. Jacobs et al., "Quantum-nondemolition measurement of photon number using radiation
    pressure", Phys. Rev. A 49, 1961-1966 (1994).
    [8] A. N. Clelanda and M. L. Roukes, "Fabrication of high frequency nanometer scale mechanical
    resonators from bulk Si crystals", Appl. Phys. Lett. 69, 18 (1996).
    [9] A. N. Cleland and M. L. Roukes, "Ananometre-scale mechanical electrometer", Nature
    392, 160-162 (1998).
    [10] Miles Blencowe, "Nanomechanical Quantum Limits", Science 304, 74 (2004).
    [11] V. Sazonova et al., "A tunable carbon nanotube electromechanical oscillator", Nature 431,
    284 (2004).
    [12] P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure",
    Phy. Rev. Letters, 83, 3174 (1999).
    [13] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard and A. Heidmann, "Radiation-pressure
    cooling and optomechanical instability of a micromirror", Nature, 444, 71 (2006).
    [14] S. Gigan, et al. "Self-cooling of a micromirror by radiation pressure", Nature, 444, 67
    (2006).
    [15] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, "Feedback Cooling of a Cantilevers
    Fundamental Mode below 5 mK", Phy. Rev. Letters 99, 017201 (2007).
    [16] Florian Marquardt, Joe P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum Theory of
    Cavity-Assisted Sideband Cooling of Mechanical Motion", Phys. Rev. Letters 99, 093902
    (2007).
    [17] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of Ground State
    Cooling of a Mechanical Oscillator Using Dynamical Backaction", Phys. Rev. Letters 99,
    093901 (2007).
    [18] A. SCHLIESSER et al., "Resolved-sideband cooling of a micromechanical oscillator", Nature
    Physics 4, 415 (2008).
    [19] S. Bose, K. Jacobs, and P. L. Knight, "Preparation of nonclassical states in cavities with
    a moving mirror", Phy. Rev. A 56, 4175 (1997).
    [20] Jing Zhang, Kunchi Peng and Samuel L. Braunstein, "Quantum-state transfer from light
    to macroscopic oscillators", Phy. Rev. A 68, 013808 (2003).
    [21] U Akram, N Kiesel, M Aspelmeyer and G J Milburn, "Single-photon opto-mechanics in
    the strong coupling regime", New Journal of Physics 12, 083030 (2010).
    [22] Stefano Mancini, Vittorio Giovannetti, David Vitali, and Paolo Tombesi, "Entangling
    Macroscopic Oscillators Exploiting Radiation Pressure", Phy. Rev. Letters 88, 120401
    (2002).
    [23] D. Vitali, et al., "Optomechanical Entanglement between a Movable Mirror and a Cavity
    Field", Phy. Rev. Letters 98, 030405 (2007).
    [24] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, "High-Sensitivity Optical
    Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical
    Sensor", Phy. Rev. Letters, 97, 133601 (2006).
    [25] T. A. Palomaki et al., "Coherent state transfer between itinerant microwave elds and a
    mechanical oscillator", Nature 495, 210-214 (13 March 2013).
    [26] J. D. Teufel, J.W. Harlow, C. A. Regal, and K.W. Lehnert, "Dynamical Backaction of
    Microwave Fields on a Nanomechanical Oscillator", Phys. Rev. Letters 101, 197203 (2008).
    [27] Max Hofheinz, H. Wang, M. Ansmann, Radoslaw C. Bialczak, Erik Lucero, M. Neeley,
    A. D. OConnell, D. Sank, J. Wenner, John M. Martinis and A. N. Cleland, "Synthesizing
    arbitrary quantum states in a superconducting resonator", Nature 459, 546 (2009).
    [28] Simon Groblacher, Jared B. Hertzberg, Michael R. Vanner, Garrett D. Cole1, Sylvain
    Gigan, K. C. Schwab and Markus Aspelmeyer, "Demonstration of an ultracold microoptomechanical
    oscillator in a cryogenic cavity", Nature Physics, 5, 485, (2009)
    [29] Alexandre Blais, Ren-Shou Huang, Andreas Wallra , S. M. Girvin, and R. J. Schoelkopf,
    "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture
    for quantum computation", Phys. Rev. A 69, 062320 (2004).
    [30] Patrick A. Truitt, Jared B. Hertzberg, C. C. Huang, Kamil L. Ekinci, and Keith C. Schwab,
    "E cient and Sensitive Capacitive Readout of Nanomechanical Resonator Arrays", Nano
    Letters 7, 120 (2007).
    [31] Mika A. Sillanpaa, Jayanta Sarkar, Jaakko Sulkko, Juha Muhonen, and Pertti J. Hakonen,
    "Accessing nanomechanical resonators via a fast microwave circuit", Appl. Phys. Letters
    95, 011909 (2009).
    [32] A. D. OConnell, M. Hofheinz1, M. Ansmann, Radoslaw C. Bialczak, M. Lenander, Erik
    Lucero, M. Neeley,D. Sank, H. Wang, M. Weides, J. Wenner, John M. Martinis and A.
    N. Cleland, "Quantum ground state and single-phonon control of a mechanical resonator",
    Nature 464, 697 (2010).
    [33] J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert,
    "Nanomechanical motion measured with an imprecision below that at the standard quantum
    limit", Nature Nanotechnology 4, 820 (2009).
    [34] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement
    Distribution among Distant Nodes in a Quantum Network", Phys. Rev. Letters
    78, 3221 (1997).
    [35] L.-M. Duan, M. D. Lukin, J. I. Cirac and P. Zoller, "Long-distance quantum communication
    with atomic ensembles and linear optics", Nature 414, 413 (2001).
    [36] L. Tian, and Hailin Wang, "Optical wavelength conversion of quantum states with optomechanics",
    Phys. Rev. A 82, 053806 (2010).
    [37] A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, "Resolvedsideband
    cooling and position measurement of a micromechanical oscillator close to the
    Heisenberg uncertainty limit", Nature Physics 5, 509-514 (2009).
    [38] A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, "Resolvedsideband
    cooling of a micromechanical oscillator", Nature Physics 4, 415-419 (2008).
    [39] J. Roels, I. De Vlaminck, L. Lagae, Bj. Maes, D. Van Thourhout, and R. Baets, "Tunable
    optical forces between nanophotonic waveguides", Nature Nanotechnology 4, 510-513
    (2009).
    [40] W. Unruh, in Quantum Optics, Experimental Gravitation and Measurements Theory,
    edited by P. Meystre and M. O. Scully Plenum, New York, (1983).
    [41] C. K. Law, "Interaction between a moving and radiation pressure: A Hamiltonian formulation",
    Phys. Rev. A 51, 2537 (1995)
    [42] A. F. Pace, M. J. Collett and D. F. Walls, "Quantum limits in interferometric detection of
    gravitational radiation", Phys. Rev. A 47, 3173 (1993)
    [43] S. Mancini, P. Tombesi, "Quantum noise reduction by radiation pressure", Phys. Rev. A
    49, 4055 (1994)
    [44] S. Bose, K. Jacobs, and P. L. Knight, "Preparation of nonclassical states in cavities with
    a moving mirror", Phys. Rev. A 56, 4175 (1997)
    [45] Simon GroLblacher, Klemens Hammerer et al., "Observation of strong coupling between a
    micromechanical resonator and an optical cavity eld", Nature 460, 724 (2009)
    [46] C. A. Regal, J. D. Teufeel and K. W. Lehnert, "Measuring nanomechanical motion with a
    microwave cavity interferometer", Nature Physics 4, 555 (2008).
    [47] J. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk and K. C. Schwab,
    "Back-action-evading measurements of nanomechanical motion", Nature Physics 6, 213
    (2010).
    [48] C. A. Regal and K. W. Lehnert, "From cavity electromechanics to cavity optomechanics",
    J. Phys. Conf. Ser. 264, 012025 (2011)
    [49] Jing Zhang, Kunchi Peng, and Samuel L. Braunstein, "Quantum-state transfer from light
    to macroscopic oscillators", Phys. Rev. A 68, 013808 (2003)
    [50] U Akram, N Kiesel, M Aspelmeyer and G J Milburn, "Single-photon opto-mechanics in
    the strong coupling regime", New J. Phys. 12, 083030 (2010)
    [51] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, "Ground-state cooling of a
    micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes",
    P.R.A 77, 033804 (2008).
    [52] M. Aspelmeyer, S. Groblacher, K. Hammerer, and N. Kiesel, "Quantum optomechanics -
    throwing a glance", J. Opt. Soc. Am. B 27, A189-A197 (2010).
    [53] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in
    Physics, Vol. m18 (Springer-Verlag, Berlin, 1993).
    [54] R. P. Feynman and F. L. Vernon, "The theory of a general quantum system interacting
    with a linear dissipative system", Ann. Phys. 24, 118 (1963).
    [55] J. S. Jin, M. W. Y. Tu, W. M. Zhang and Y. J. Yan, "Nonequilibrium theory of transient
    transport dynamics in nanostructures via the Feynman-Vernon in
    uence functional
    approach.", New J. Phys 12, 083013 (2010).
    [56] M. W. Y. Tu and W. M. Zhang, "Non-Markovian decoherence theory for a double-dot
    charge qubit", Phys. Rev. B 78, 235311 (2008).
    [57] M. W. Y. Tu, M. T. Lee and W. M. Zhang, "Exact master equation and non-Markovian
    decoherence for quantum dot quantum computing Invited article for the special issue Quantum
    Decoherence and Entanglement", Quantum Inf. Process, 8, 631, (2009).
    [58] J. H. An, and W. M. Zhang, "Non-Markovian entanglement dynamics of noisy continuous
    variable quantum channels", Phys. Rev. A 76, 042127 (2007); J. H. An, M. Feng, and W.
    M. Zhang, "Non-Markovian decoherence dynamics of entangled coherent states", Quantum
    Inf. Comput. 9, 0317 (2009).
    [59] Chan U Lei, Wei-Min Zhang, "A quantum photonic dissipative transport theory", Annals
    of Physics, 327 1408-1433 (2012)
    [60] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M.P. Fisher, A. Garg, and W. Zwerger,
    "Dynamics of the dissipative two-state system", Rev. Mod. Phys. 59, 1 (1987).
    [61] W. M. Zhang, D. H. Feng and R. Gilmore, "Coherent states: Theory and some applications",
    Rev. Mod. Phys. 62, 867 (1990).
    [62] the annotaion 100 in the bibliography of this paper: Annals of Physics, 327 (2012) 1408-
    1433, by Chan U Lei and Prof. Wei-Min Zhang
    [63] From the manuscript of Lo Ping-Yuan, a candidate for doctor's degree of NCKU.
    [64] Quantum Optics, by D.F. Walls and Gerard J. Milburn, p.58 - 72.
    [65] H. J. Kimble, "The quantum internet", Nature (London) 453, 1023 (2008).
    [66] Ying-Dan Wang and Aashish A. Clerk, "Using Interference for High Fidelity Quantum
    State Transfer in Optomechanics", Phys. Rev. Letter 108, 153603 (2012).
    [67] Ying-Dan Wang and Aashish A Clerk, "Using dark modes for high- delity optomechanical
    quantum state transfer", New Journal of Physics 14, 105010 (2012).
    [68] G. S. Vasilev, A. Kuhn, and N. V. Vitanov , "Optimum pulse shapes for stimulated Raman
    adiabatic passage", Phys. Rev. A 80, 013417 (2009).
    [69] A. Uhlmann, "The Transition probability un the state space of a *-algebra", Rep. Math.
    Phys. 9, 273 (1976).
    [70] Heng-Na Xiong, Wei-Min Zhang, Xiaoguang Wang and Meng-Hsiu Wu, "Exact non-
    Markovian cavity dynamics stongly coupled to a reservoir", Phys. Rev. A 82, 012105
    (2010).

    下載圖示 校內:2014-08-21公開
    校外:2014-08-21公開
    QR CODE