簡易檢索 / 詳目顯示

研究生: 陳子豪
Chen, Tzu-Hao
論文名稱: 以分子動力學模擬研究探針與脂質之間的作用力在奈米壓痕試驗中對脂質雙層破裂行為的影響
Influence of Probe-Lipid Interactions on Rupture Mechanism of Lipid Bilayer in Indentation Test: A Molecular Dynamic Simulation Study
指導教授: 許文東
Su, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 70
中文關鍵詞: 脂質雙層雙層邊界親水性孔洞分子動力學模擬奈米壓痕試驗
外文關鍵詞: lipid bilayer, bilayer edge, hydrophilic pore, molecular dynamics simulation, nanoindentation
相關次數: 點閱:106下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用分子動力學模擬在壓痕試驗中自由懸浮於溶劑中的脂質雙層,並且探討在壓痕試驗中探針與脂質之間的作用力對脂質雙層結構的影響。藉由計算壓痕過程中脂質雙層的局部的物理性質變化,我們證實了探針下壓而使脂質雙層破裂的原因不僅是因為雙層結構的局部薄化而使脂質尾端自由能上升;雙層結構的局部延展也會使得脂質尾端暴露於水溶液當中而使脂質尾端粒子自由能進一步增加,這兩種原因皆提高了微孔洞的形成的機率而使破裂發生。而在探針的縮回過程中,我們發現,假如探針與脂質尾端之間的作用力不足以使脂質尾端吸附於探針上,脂質分子會在破裂區域重新排列成親水性的雙層邊界而最終在脂質雙層中留下親水性孔洞,且探針上不會出現任何的殘餘吸附脂質。反之在探針的縮回的過程中脂質尾端吸附於探針之上,則最終脂質雙層可回復到自由懸浮的狀態,其物理性質與壓痕前的脂質雙層幾乎相同,且可在探針上觀察到殘餘的吸附脂質,而其數量則取決於探針與脂質頭部間的作用力;此作用力越強,則探針上將留下較多的殘餘吸附脂質,這些結果可以幫助我們於藥理學上尋找適合的奈米注射裝置。
    本研究進一步觀測探針縮回時的受力情形並與探針與脂質之間的作用力關係做比對,發現在相同的壓痕速度下,當探針與脂質尾端之間的作用力較強時,在探針縮回過程中會測得較大的探針最大吸附力;反之假如探針與脂質尾端之間的作用力較弱,則會在探針縮回的過程中測得較小的探針最大吸附力。這些結果表明,我們可以利用AFM實驗所得到的正向力-位移變化曲線來判定探針與脂質間作用力的強弱關係,並做為在相關脂質雙層的量測實驗中關於探針材質選用的一個參考。

    We study the indentation test of a free-standing lipid bilayer by molecular dynamics simulation, and discuss the effect of the interaction between the probe and the lipids on the bilayer structure. By calculating the local physical quantities of the lipid bilayers in the indentation process, we confirmed that the cause of bilayer rupture is not only because bilayer local thinning make the free energy of the lipid tails increase, bilayer local extension also make the lipid tails exposure to solvent and further increase the free energy of the lipid tails. These two reasons both increase the probability of micro voids formation of the lipid bilayers. In the retraction process, we found that if the interaction between the probe and the lipid tails is insufficient to make lipids adsorbed on the probe, the lipid molecules tend to rearrange to form hydrophilic bilayer edges in the rupture regions and eventually leave a hydrophilic pore in the bilayer, and no residual lipids were found on the probe. Conversely, if the lipid tails are adsorbed by the probe in the retraction process, the lipid bilayers can revert to a free-standing state, and the physical quantities of the lipid bilayers before and after the indentation are almost identical. Besides, we found that there are some residual lipids were adsorbed by the probe, and the number of the residual lipids depends on the interaction between the probe and the lipid head groups, the stronger the interaction is, the more number of residual lipids were adsorbed by the probe. These results can help us to find a suitable pharmacologically nanoinjectors.
    Furthermore, we investigated the relationship between the force-indentation curve and the interaction between the probe and the lipids. As expected, we observe that when the interaction between the probe and the lipid tail is stronger, the lager maximum attractive force can be measured in the retraction process at the same indentation speed. These results show that we can use the force –indentation curve obtained from AFM experiments to define the magnitude of the interaction between the probe and the lipids, and help us to select the proper probe materials in the relevant AFM experiments.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 xi 第1章 緒論 1 第2章 文獻回顧 2 第3章 實驗方法與流程 10 3.1 實驗流程 10 3.2 分子動力學模擬 11 3.2.1 簡介 11 3.2.2 勢能函數 12 3.2.2.1 Lennard Jones勢能 13 3.2.2.2 庫倫靜電力勢能 14 3.2.2.3 鍵長勢能 14 3.2.2.4 鍵角勢能 14 3.2.3 運動方程式 15 3.2.3.1 15 3.2.4 系綜 16 3.2.4.1 Nose-Hoover溫度修正法 16 3.2.5 週期性邊界條件 18 3.2.6 計算效率優化 18 3.2.6.1 截斷半徑法 18 3.2.6.2 Verlet 表列法 19 3.3 模型建置 23 3.3.1 探針模型 23 3.3.2 溶劑與脂質雙層模型 23 3.3.3 脂質雙層系統模型 23 3.4 實驗設計及參數 27 3.5 實驗分析 33 第4章 結果與討論 35 4.1 脂質雙層平衡 35 4.2 脂質雙層奈米壓痕模擬 37 4.2.1 探針下壓導致膜的破裂 37 4.2.2 探針縮回導致膜的回復 38 4.2.3 探針縮回在膜中留下親水性孔洞 39 4.3 正向力-位移變化曲線 52 第5章 結論及未來展望 61 5.1 結論 61 5.2 未來展望 63 第6章 參考文獻 64

    [1] A. G. Lee, "FUNCTIONAL PROPERTIES OF BIOLOGICAL MEMBRANES A PHYSICAL CHEMICAL APPROACH," Progress in Biophysics and Molecular Biology, vol. 29, pp. 3-56, 1975 1975.
    [2] S. J. Marrink, E. Lindahl, O. Edholm, and A. E. Mark, "Simulation of the spontaneous aggregation of phospholipids into bilayers," Journal of the American Chemical Society, vol. 123, pp. 8638-8639, Sep 5 2001.
    [3] D. M. Small, "LATERAL CHAIN PACKING IN LIPIDS AND MEMBRANES," Journal of Lipid Research, vol. 25, pp. 1490-1500, 1984 1984.
    [4] M. Venturoli, M. M. Sperotto, M. Kranenburg, and B. Smit, "Mesoscopic models of biological membranes," Physics Reports-Review Section of Physics Letters, vol. 437, pp. 1-54, Dec 2006.
    [5] R. Koynova and M. Caffrey, "Phases and phase transitions of the phosphatidylcholines," Biochimica Et Biophysica Acta-Reviews on Biomembranes, vol. 1376, pp. 91-145, Jun 29 1998.
    [6] M. Kranenburg, M. Venturoli, and B. Smit, "Phase behavior and induced interdigitation in bilayers studied with dissipative particle dynamics," Journal of Physical Chemistry B, vol. 107, pp. 11491-11501, Oct 16 2003.
    [7] O. Lenz and F. Schmid, "Structure of symmetric and asymmetric "ripple" phases in lipid bilayers," Physical Review Letters, vol. 98, Feb 2 2007.
    [8] J. F. Nagle and S. Tristram-Nagle, "Structure of lipid bilayers," Biochimica Et Biophysica Acta-Reviews on Biomembranes, vol. 1469, pp. 159-195, Nov 10 2000.
    [9] J. F. Nagle, R. T. Zhang, S. TristramNagle, W. J. Sun, H. I. Petrache, and R. M. Suter, "X-ray structure determination of fully hydrated L(alpha) phase dipalmitoylphosphatidylcholine bilayers," Biophysical Journal, vol. 70, pp. 1419-1431, Mar 1996.
    [10] B. Tenchov, R. Koynova, and G. Rapp, "New ordered metastable phases between the gel and subgel phases in hydrated phospholipids," Biophysical Journal, vol. 80, pp. 1873-1890, Apr 2001.
    [11] E. Evans and D. Needham, "PHYSICAL-PROPERTIES OF SURFACTANT BILAYER-MEMBRANES - THERMAL TRANSITIONS, ELASTICITY, RIGIDITY, COHESION, AND COLLOIDAL INTERACTIONS," Journal of Physical Chemistry, vol. 91, pp. 4219-4228, Jul 30 1987.
    [12] D. Needham, T. J. McIntosh, and E. Evans, "THERMOMECHANICAL AND TRANSITION PROPERTIES OF DIMYRISTOYLPHOSPHATIDYLCHOLINE CHOLESTEROL BILAYERS," Biochemistry, vol. 27, pp. 4668-4673, Jun 28 1988.
    [13] D. Needham and R. S. Nunn, "ELASTIC-DEFORMATION AND FAILURE OF LIPID BILAYER-MEMBRANES CONTAINING CHOLESTEROL," Biophysical Journal, vol. 58, pp. 997-1009, Oct 1990.
    [14] W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, "Effect of chain length and unsaturation on elasticity of lipid bilayers," Biophysical Journal, vol. 79, pp. 328-339, Jul 2000.
    [15] Y.-T. Yang, J.-D. Liao, Y.-L. Lee, C.-W. Chang, and H.-J. Tsai, "Ultra-thin phospholipid layers physically adsorbed upon glass characterized by nano-indentation at the surface contact level," Nanotechnology, vol. 20, May 13 2009.
    [16] M.-C. Giocondi, D. Yamamoto, E. Lesniewska, P.-E. Milhiet, T. Ando, and C. Le Grimellec, "Surface topography of membrane domains," Biochimica Et Biophysica Acta-Biomembranes, vol. 1798, pp. 703-718, Apr 2010.
    [17] E. I. Goksu, J. M. Vanegas, C. D. Blanchette, W.-C. Lin, and M. L. Longo, "AFM for structure and dynamics of biomembranes," Biochimica Et Biophysica Acta-Biomembranes, vol. 1788, pp. 254-266, Jan 2009.
    [18] X. M. Liang, G. Z. Mao, and K. Y. S. Ng, "Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy," Journal of Colloid and Interface Science, vol. 278, pp. 53-62, Oct 1 2004.
    [19] I. Reviakine and A. Brisson, "Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy," Langmuir, vol. 16, pp. 1806-1815, Feb 22 2000.
    [20] L. Picas, P.-E. Milhiet, and J. Hernandez-Borrell, "Atomic force microscopy: A versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale," Chemistry and Physics of Lipids, vol. 165, pp. 845-860, Dec 2012.
    [21] J. Lahiri, P. Kalal, A. G. Frutos, S. T. Jonas, and R. Schaeffler, "Method for fabricating supported bilayer lipid membranes on gold," Langmuir, vol. 16, pp. 7805-7810, Oct 3 2000.
    [22] C. E. Miller, J. Majewski, T. Gog, and T. L. Kuhl, "Characterization of biological thin films at the solid-liquid interface by X-ray reflectivity," Physical Review Letters, vol. 94, Jun 17 2005.
    [23] E. Sackmann, "Supported membranes: Scientific and practical applications," Science, vol. 271, pp. 43-48, Jan 5 1996.
    [24] C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark, and A. M. Bellocq, "STERIC INTERACTIONS IN A MODEL MULTIMEMBRANE SYSTEM - A SYNCHROTRON X-RAY STUDY," Physical Review Letters, vol. 57, pp. 2718-2721, Nov 24 1986.
    [25] T. Stora, Z. Dienes, H. Vogel, and C. Duschl, "Histidine-tagged amphiphiles for the reversible formation of lipid bilayer aggregates on chelator-functionalized gold surfaces," Langmuir, vol. 16, pp. 5471-5478, Jun 13 2000.
    [26] L. K. Tamm and H. M. McConnell, "SUPPORTED PHOSPHOLIPID-BILAYERS," Biophysical Journal, vol. 47, pp. 105-113, 1985 1985.
    [27] Z. V. Leonenko, E. Finot, H. Ma, T. E. S. Dahms, and D. T. Cramb, "Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy," Biophysical Journal, vol. 86, pp. 3783-3793, Jun 2004.
    [28] M. Kocun, T. D. Lazzara, C. Steinem, and A. Janshoff, "Preparation of Solvent-Free, Pore-Spanning Lipid Bilayers: Modeling the Low Tension of Plasma Membranes," Langmuir, vol. 27, pp. 7672-7680, Jun 21 2011.
    [29] I. Mey, M. Stephan, E. K. Schmitt, M. M. Mueller, M. Ben Amar, C. Steinem, and A. Janshoff, "Local Membrane Mechanics of Pore-Spanning Bilayers," Journal of the American Chemical Society, vol. 131, pp. 7031-7039, May 27 2009.
    [30] S. Steltenkamp, M. M. Mueller, M. Deserno, C. Hennesthal, C. Steinem, and A. Janshoff, "Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy," Biophysical Journal, vol. 91, pp. 217-226, Jul 2006.
    [31] C. Hennesthal and C. Steinem, "Pore-spanning lipid bilayers visualized by scanning force microscopy," Journal of the American Chemical Society, vol. 122, pp. 8085-8086, Aug 23 2000.
    [32] D. P. Tieleman, H. Leontiadou, A. E. Mark, and S. J. Marrink, "Simulation of pore formation in lipid bilayers by mechanical stress and electric fields," Journal of the American Chemical Society, vol. 125, pp. 6382-6383, May 28 2003.
    [33] H. Leontiadou, A. E. Mark, and S. J. Marrink, "Molecular dynamics simulations of hydrophilic pores in lipid bilayers," Biophysical Journal, vol. 86, pp. 2156-2164, Apr 2004.
    [34] C. Loison, M. Mareschal, and F. Schmid, "Pores in bilayer membranes of amphiphilic molecules: Coarse-grained molecular dynamics simulations compared with simple mesoscopic models," Journal of Chemical Physics, vol. 121, pp. 1890-1900, Jul 22 2004.
    [35] A. Gauthier and B. Joos, "Stretching effects on the permeability of water molecules across a lipid bilayer," Journal of Chemical Physics, vol. 127, Sep 14 2007.
    [36] K. Koshiyama, T. Yano, and T. Kodama, "Self-Organization of a Stable Pore Structure in a Phospholipid Bilayer," Physical Review Letters, vol. 105, Jul 2 2010.
    [37] J. Neder, B. West, P. Nielaba, and F. Schmid, "Coarse-grained simulations of membranes under tension," Journal of Chemical Physics, vol. 132, Mar 21 2010.
    [38] M. D. Tomasini, C. Rinaldi, and M. S. Tomassone, "Molecular dynamics simulations of rupture in lipid bilayers," Experimental Biology and Medicine, vol. 235, pp. 181-188, Feb 2010.
    [39] K. Koshiyama and S. Wada, "Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching," Journal of Biomechanics, vol. 44, pp. 2053-2058, Jul 28 2011.
    [40] D. W. Deamer and J. Bramhall, "PERMEABILITY OF LIPID BILAYERS TO WATER AND IONIC SOLUTES," Chemistry and Physics of Lipids, vol. 40, pp. 167-188, Jun-Jul 1986.
    [41] R. W. Glaser, S. L. Leikin, L. V. Chernomordik, V. F. Pastushenko, and A. I. Sokirko, "REVERSIBLE ELECTRICAL BREAKDOWN OF LIPID BILAYERS - FORMATION AND EVOLUTION OF PORES," Biochimica Et Biophysica Acta, vol. 940, pp. 275-287, May 24 1988.
    [42] M. Jansen and A. Blume, "A COMPARATIVE-STUDY OF DIFFUSIVE AND OSMOTIC WATER PERMEATION ACROSS BILAYERS COMPOSED OF PHOSPHOLIPIDS WITH DIFFERENT HEAD GROUPS AND FATTY ACYL CHAINS," Biophysical Journal, vol. 68, pp. 997-1008, Mar 1995.
    [43] E. J. Wallace and M. S. P. Sansom, "Carbon nanotube/detergent interactions via coarse-grained molecular dynamics," Nano Letters, vol. 7, pp. 1923-1928, Jul 2007.
    [44] X. Shi, Y. Kong, and H. Gao, "Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane," Acta Mechanica Sinica, vol. 24, pp. 161-169, Apr 2008.
    [45] E. J. Wallace and M. S. P. Sansom, "Blocking of carbon nanotube based nanoinjectors by lipids: A simulation study," Nano Letters, vol. 8, pp. 2751-2756, Sep 2008.
    [46] J. Wong-Ekkabut, S. Baoukina, W. Triampo, I. M. Tang, D. P. Tieleman, and L. Monticelli, "Computer simulation study of fullerene translocation through lipid membranes," Nature Nanotechnology, vol. 3, pp. 363-368, Jun 2008.
    [47] X. Shi, A. von dem Bussche, R. H. Hurt, A. B. Kane, and H. Gao, "Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation," Nature Nanotechnology, vol. 6, pp. 714-719, Nov 2011.
    [48] C.-H. Huang, P.-Y. Hsiao, F.-G. Tseng, S.-K. Fan, C.-C. Fu, and R.-L. Pan, "Pore-Spanning Lipid Membrane under Indentation by a Probe Tip: A Molecular Dynamics Simulation Study," Langmuir, vol. 27, pp. 11930-11942, Oct 4 2011.
    [49] A. J. Stone, The theory of intermolecular forces: Clarendon Press, 1996.
    [50] R. J. Sadus, Molecular Simulation of Fluids: Elsevier, 2002.
    [51] P. O. J. Scherer, Computational Physics: Simulation of Classical and Quantum Systems: Springer, 2010.
    [52] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, "The MARTINI force field: Coarse grained model for biomolecular simulations," Journal of Physical Chemistry B, vol. 111, pp. 7812-7824, Jul 12 2007.
    [53] L. Verlet, "COMPUTER EXPERIMENTS ON CLASSICAL FLUIDS .2. EQUILIBRIUM CORRELATION FUNCTIONS," Physical Review, vol. 165, pp. 201, 1968.
    [54] S. J. Marrink, A. H. de Vries, and A. E. Mark, "Coarse grained model for semiquantitative lipid simulations," Journal of Physical Chemistry B, vol. 108, pp. 750-760, Jan 15 2004.
    [55] S. Nose, "A MOLECULAR-DYNAMICS METHOD FOR SIMULATIONS IN THE CANONICAL ENSEMBLE," Molecular Physics, vol. 52, pp. 255-268, 1984.
    [56] S. Nose, "A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS," Journal of Chemical Physics, vol. 81, pp. 511-519, 1984.
    [57] W. Shinoda, R. DeVane, and M. L. Klein, "Zwitterionic Lipid Assemblies: Molecular Dynamics Studies of Monolayers, Bilayers, and Vesicles Using a New Coarse Grain Force Field," Journal of Physical Chemistry B, vol. 114, pp. 6836-6849, May 27 2010.
    [58] O. Berger, O. Edholm, and F. Jahnig, "Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature," Biophysical Journal, vol. 72, pp. 2002-2013, May 1997.
    [59] J. Schneider, W. Barger, and G. U. Lee, "Nanometer scale surface properties of supported lipid bilayers measured with hydrophobic and hydrophilic atomic force microscope probes," Langmuir, vol. 19, pp. 1899-1907, Mar 4 2003.
    [60] F. Y. Jiang, Y. Bouret, and J. T. Kindt, "Molecular dynamics simulations of the lipid bilayer edge," Biophysical Journal, vol. 87, pp. 182-192, Jul 2004.
    [61] P. M. Kasson and V. S. Pande, "Molecular dynamics simulation of lipid reorientation at bilayer edges," Biophysical Journal, vol. 86, pp. 3744-3749, Jun 2004.
    [62] H. Wang, J. de Joannis, Y. Jiang, J. C. Gaulding, B. Albrecht, F. Yin, K. Khanna, and J. T. Kindt, "Bilayer edge and curvature effects on partitioning of lipids by tail length: Atomistic simulations," Biophysical Journal, vol. 95, pp. 2647-2657, Sep 15 2008.
    [63] P. S. Adhangale and D. P. Gaver, III, "Equation of state for a coarse-grained DPPC monolayer at the air/water interface," Molecular Physics, vol. 104, pp. 3011-3019, Oct 10 2006.
    [64] E. Evans and K. Ritchie, "Dynamic strength of molecular adhesion bonds," Biophysical Journal, vol. 72, pp. 1541-1555, Apr 1997.
    [65] S. J. Marrink, O. Berger, P. Tieleman, and F. Jahnig, "Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations," Biophysical Journal, vol. 74, pp. 931-943, Feb 1998.
    [66] H. Lu and K. Schulten, "Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interpret atomic force microscopy observations," Chemical Physics, vol. 247, pp. 141-153, Aug 1 1999.
    [67] J.-W. Park, "Probe chemistry effect on surface properties of asymmetric-phase lipid bilayers," Colloids and Surfaces B-Biointerfaces, vol. 75, pp. 290-293, Jan 1 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE