簡易檢索 / 詳目顯示

研究生: 郭政慶
Kuo, Cheng-Ching
論文名稱: 使用單光子之輕量化量子金鑰分配及非對稱式量子安全協定
Semi-Quantum inspired lightweight quantum key distribution protocols using single photons
指導教授: 黃宗立
Hwang, Tzonelih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 54
中文關鍵詞: 量子密碼學量子金鑰分配協定第三方近乎不誠實量子私密分享協定
外文關鍵詞: Quantum cryptography, Quantum key distribution, Semi-quantum inspired lightweight quantum protocol, Untrusted third party, Semi-quantum inspired lightweight asymmetric quantum protocol, Quantum secret sharing
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由結合量子環境及單光子的特性設計出了使用單光子之三方輕量化量子金鑰分配協定及非對稱式量子安全協定。而在現行大部分的文獻中,量子金鑰分配協定中使用者的部分都會需要量子能力中的其中三種,而本論文將只使用到其中兩種量子能力且不包含重新排序的環境稱之為”輕量化環境”,明顯地在這樣的環境下使用者對量子設備的需求可以降低,也因此在這樣的環境要求下所使用的量子金鑰分配協定將更容易運用在實際環境中,之後本論文結合此環境和單光子的特性提出三方的量子金鑰分配協定。起初本論文先將第三方從產生糾纏光子改成產生單光子,發現仍然可以安全地執行金鑰分發,爾後本論文更進一步降低第三方的量測能力,讓它只能量測單光子,最後便能在只使用單光子的情況下做到金鑰分配。除此之外本論文還去研究非對稱式量子環境,提出了非對稱式量子金鑰分享及私密分享,使量子協定更為靈活、更能應用於不同環境

    This thesis designs two semi-quantum inspired mediated quantum key distribution (SQIL-MQKD) protocols and two semi-quantum inspired asymmetric protocols using single photons. For more lightweight and practical application, we propose a lightweight mediated QKD protocol which allows two participants to share a secret key with the assistance of an untrusted Third-Party (TP). In this protocol, the participants are only allowed to do two simple quantum operations on qubits and TP only needs to use single photons as quantum resource. Furthermore, we use the attributes of the single photon to reduce the quantum capability of the untrusted TP and propose a limited resource mediated QKD protocol using single photons. In this protocol, the cost of the quantum devices for participants and TP can be reduced a lot.
    Besides, for more practical applications, a semi-quantum inspired lightweight mediated asymmetric quantum key distribution (SQIL-MAQKD) protocol with two participants having different quantum capabilities is proposed. Then, we extend the concept of SQIL-MAQKD protocol to propose a semi-quantum inspired lightweight asymmetric secret sharing (SQIL-AQSS) protocol that can let a secret holder distribute his/her secret shadows to several participants.

    中文摘要 i Abstract ii 誌 謝 iv Content v List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation and Contribution 3 1.3 Thesis Structure 6 Chapter 2 Preliminaries 7 2.1 Properties of single photons 7 2.2 Properties of Bell states[43] 9 2.3 Unitary operators 10 2.4 Robustness 11 Chapter 3 Semi-Quantum Inspired Lightweight Mediated Quantum Key Distribution 13 3.1 Proposed SQIL-MQKD protocol 13 3.2 Security analyses 16 3.3 Comparison 22 Chapter 4 Limited Resource Semi-Quantum Inspired Lightweight Mediated Quantum Key Distribution 25 4.1 Proposed limited resource SQIL-MQKD protocol 25 4.2 Security analyses 28 4.3 Comparison 32 Chapter 5 Efficient Semi-Quantum Inspired Asymmetric Quantum Protocols 34 5.1 Efficient Semi-quantum Inspired Lightweight Mediated Asymmetric Quantum Key Distribution Protocol 34 5.1.1 Proposed SQIL-MAQKD protocol 35 5.1.2 Comparison 38 5.2 Efficient Semi-quantum Inspired Lightweight Asymmetric Quantum Secret Sharing Protocol 40 5.2.1 Proposed SQIL-AQSS protocol 40 5.2.2 Comparison 43 5.3 Security analyses 45 Chapter 6 Conclusion 50 Bibliography 51

    [1] P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," in Proceedings 35th annual symposium on foundations of computer science, 1994: Ieee, pp. 124-134.
    [2] C. BENNET, "Quantum cryptography: Public key distribution and coin tossing," in Proc. of IEEE Int. Conf. on Comp., Syst. and Signal Proc., Bangalore, India, Dec. 10-12, 1984, 1984.
    [3] C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Physical review letters, vol. 68, no. 21, p. 3121, 1992.
    [4] A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Physical review letters, vol. 67, no. 6, p. 661, 1991.
    [5] C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Physical review letters, vol. 68, no. 5, p. 557, 1992.
    [6] C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," Theor. Comput. Sci., vol. 560, no. 12, pp. 7-11, 2014.
    [7] G.-L. Long and X.-S. Liu, "Theoretically efficient high-capacity quantum-key-distribution scheme," Physical Review A, vol. 65, no. 3, p. 032302, 2002.
    [8] H.-K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Physical review letters, vol. 94, no. 23, p. 230504, 2005.
    [9] C. Li, H.-S. Song, L. Zhou, and C.-F. Wu, "A random quantum key distribution achieved by using Bell states," Journal of Optics B: Quantum and Semiclassical Optics, vol. 5, no. 2, p. 155, 2003.
    [10] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, "Experimental quantum key distribution with decoy states," Physical review letters, vol. 96, no. 7, p. 070502, 2006.
    [11] H.-C. Shih, K.-C. Lee, and T. Hwang, "New efficient three-party quantum key distribution protocols," IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 6, pp. 1602-1606, 2009.
    [12] H.-K. Lo, M. Curty, and B. Qi, "Measurement-device-independent quantum key distribution," Physical review letters, vol. 108, no. 13, p. 130503, 2012.
    [13] N. Zhou, G. Zeng, and J. Xiong, "Quantum key agreement protocol," Electronics Letters, vol. 40, no. 18, pp. 1149-1150, 2004.
    [14] S.-K. Chong and T. Hwang, "Quantum key agreement protocol based on BB84," Optics Communications, vol. 283, no. 6, pp. 1192-1195, 2010.
    [15] B. Liu, F. Gao, W. Huang, and Q.-Y. Wen, "Multiparty quantum key agreement with single particles," Quantum information processing, vol. 12, no. 4, pp. 1797-1805, 2013.
    [16] G.-B. Xu, Q.-Y. Wen, F. Gao, and S.-J. Qin, "Novel multiparty quantum key agreement protocol with GHZ states," Quantum Information Processing, vol. 13, no. 12, pp. 2587-2594, 2014.
    [17] B. Cai, G. Guo, and S. Lin, "Multi-party quantum key agreement with teleportation," Modern Physics Letters B, vol. 31, no. 10, p. 1750102, 2017.
    [18] M. Hillery, V. Bužek, and A. Berthiaume, "Quantum secret sharing," Physical Review A, vol. 59, no. 3, p. 1829, 1999.
    [19] A. Karlsson, M. Koashi, and N. Imoto, "Quantum entanglement for secret sharing and secret splitting," Physical Review A, vol. 59, no. 1, p. 162, 1999.
    [20] G.-P. Guo and G.-C. Guo, "Quantum secret sharing without entanglement," Physics Letters A, vol. 310, no. 4, pp. 247-251, 2003.
    [21] F.-G. Deng, G. L. Long, and H.-Y. Zhou, "An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs," Physics Letters A, vol. 340, no. 1-4, pp. 43-50, 2005.
    [22] Z.-j. Zhang, Y. Li, and Z.-x. Man, "Multiparty quantum secret sharing," Physical Review A, vol. 71, no. 4, p. 044301, 2005.
    [23] Y.-G. Yang and Q.-Y. Wen, "An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement," Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 5, p. 055305, 2009.
    [24] H.-Y. Tseng, J. Lin, and T. Hwang, "New quantum private comparison protocol using EPR pairs," Quantum Information Processing, vol. 11, no. 2, pp. 373-384, 2012.
    [25] W. Liu, Y.-B. Wang, and Z.-T. Jiang, "An efficient protocol for the quantum private comparison of equality with W state," Optics Communications, vol. 284, no. 12, pp. 3160-3163, 2011.
    [26] X.-C. Yao et al., "Observation of eight-photon entanglement," Nature photonics, vol. 6, no. 4, pp. 225-228, 2012.
    [27] X.-L. Wang et al., "Experimental ten-photon entanglement," Physical review letters, vol. 117, no. 21, p. 210502, 2016.
    [28] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature, vol. 432, no. 7016, pp. 482-486, 2004.
    [29] M. Boyer, D. Kenigsberg, and T. Mor, "Quantum key distribution with classical Bob," in 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07), 2007: IEEE, pp. 10-10.
    [30] M. Boyer, R. Gelles, D. Kenigsberg, and T. Mor, "Semiquantum key distribution," Physical Review A, vol. 79, no. 3, p. 032341, 2009.
    [31] X. Zou, D. Qiu, S. Zhang, and P. Mateus, "Semiquantum key distribution without invoking the classical party’s measurement capability," Quantum Information Processing, vol. 14, no. 8, pp. 2981-2996, 2015.
    [32] Q. Li, W. H. Chan, and D.-Y. Long, "Semiquantum secret sharing using entangled states," Physical Review A, vol. 82, no. 2, p. 022303, 2010.
    [33] J. Wang, S. Zhang, Q. Zhang, and C.-J. Tang, "Semiquantum secret sharing using two-particle entangled state," International Journal of Quantum Information, vol. 10, no. 05, p. 1250050, 2012.
    [34] L. Li, D. Qiu, and P. Mateus, "Quantum secret sharing with classical Bobs," Journal of Physics A: Mathematical and Theoretical, vol. 46, no. 4, p. 045304, 2013.
    [35] C. Xie, L. Li, and D. Qiu, "A novel semi-quantum secret sharing scheme of specific bits," International Journal of Theoretical Physics, vol. 54, no. 10, pp. 3819-3824, 2015.
    [36] W.-H. Chou, T. Hwang, and J. Gu, "Semi-quantum private comparison protocol under an almost-dishonest third party," arXiv preprint arXiv:1607.07961, 2016.
    [37] K. Thapliyal, R. D. Sharma, and A. Pathak, "Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment," International Journal of Quantum Information, vol. 16, no. 05, p. 1850047, 2018.
    [38] P.-H. Lin, T. Hwang, and C.-W. Tsai, "Efficient semi-quantum private comparison using single photons," Quantum Information Processing, vol. 18, no. 7, p. 207, 2019.
    [39] W. O. Krawec, "Mediated semiquantum key distribution," Physical Review A, vol. 91, no. 3, p. 032323, 2015.
    [40] P. H. Lin, C. W. Tsai, and T. Hwang, "Mediated Semi‐Quantum Key Distribution Using Single Photons," Annalen der Physik, p. 1800347, 2019.
    [41] Chen,Y,J Hwang, T. "Randomization-Based semi-quantum key distribution and Strict semi-quantum key distribution with local unitary operations" master's thesis, NCKU CSIE ,2018. <https://hdl.handle.net/11296/366nyt>.
    [42] Yang,Y,F Hwang, T. "Asymmetric semi-quantum security protocols: Semi-quantum key distribution and Semi-quantum secret sharing" master's thesis, NCKU CSIE ,2019. <https://hdl.handle.net/11296/3d948c>.
    [43] W. P. Grice, "Arbitrarily complete Bell-state measurement using only linear optical elements," Physical Review A, vol. 84, no. 4, p. 042331, 2011.
    [44] E. Biham, M. Boyer, G. Brassard, J. Van De Graaf, and T. Mor, "Security of quantum key distribution against all collective attacks," Algorithmica, vol. 34, no. 4, pp. 372-388, 2002.
    [45] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Reviews of modern physics, vol. 81, no. 3, p. 1301, 2009.
    [46] C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM journal on Computing, vol. 17, no. 2, pp. 210-229, 1988.
    [47] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Transactions on Information Theory, vol. 41, no. 6, pp. 1915-1923, 1995.
    [48] F. Gao, S.-J. Qin, F.-Z. Guo, and Q.-Y. Wen, "Dense-coding attack on three-party quantum key distribution protocols," IEEE Journal of Quantum Electronics, vol. 47, no. 5, pp. 630-635, 2011.

    無法下載圖示 校內:2025-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE