| 研究生: |
連國廷 Lien, Kuo-Ting |
|---|---|
| 論文名稱: |
創傷弧菌生物二型之鰻魚毒力質體中可與vep07基因互補以提升此菌於鰻魚血清中存活的基因之鑑識 Identification of genes in eel-virulence plasmid that complement vep07 for survival of biotype 2 Vibrio vulnificus in eel serum |
| 指導教授: |
何漣漪
Hor, Lien-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 創傷弧菌 、鰻魚 |
| 外文關鍵詞: | Vibrio vulnificus, eel |
| 相關次數: | 點閱:123 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
創傷弧菌為生長於海洋之革蘭氏陰性菌,會感染人類和鰻魚並造成嚴重的全身性感染症。創傷弧菌依其感染的天然宿主不同,可區分為三種生物型,其中只有生物二型的菌株會感染鰻魚。實驗室先前的研究已證實創傷弧菌生物二型菌株具有一共有的質體,而此質體的存在會促進生物二型菌株在鰻魚血清中的存活,進而對鰻魚造成毒力。我們進一步發現,生物二型野生株CECT4999之毒力質體pR99上的基因vep07為此菌株在鰻魚血清中存活所必需。然而,當此基因單獨送入無pR99的菌株時,雖然可以正常合成出蛋白質,卻不能使該菌株在鰻魚血清中存活,表示在此毒力質體pR99上可能尚有其他的基因參與在其中。因此,在本研究中我以兩種方法來尋找pR99上可以與vep07共同作用以回復細菌在鰻魚血清中存活能力的基因。首先,我將目前已知其他兩個會影響生物二型菌株在鰻魚血清中存活能力的基因vep20與vep71,或是pR99上不同的DNA片段送入已帶有vep07的無pR99的菌株中,發現它們都不能幫助vep07回復細菌在鰻魚血清中的存活能力。之後,我進行pR99上大規模之基因剔除以尋找其上參與對鰻魚血清之抗性的基因。先前已知在pR99中具有一與細菌抵抗鰻魚血清殺菌作用沒有關聯之rtx基因組,因此我在保留rtx基因組與已知的毒力基因vep07、vep20、vep71的情況下,對pR99進行大規模的基因剔除。過程中,我確認pR99上的mazEF毒素─抗毒素基因組與兩處可能之質體複製起始點為pR99穩定維持在菌體中所需。最後,在只保留vep07、vep20、vep71、rtx基因組、mazEF與其中一個質體複製起始點(位在vep27序列上)所在的vep21-vep31 DNA片段之情況下,該突變株仍然可以在鰻魚血清中存活。另外,將vep21-vep31 DNA片段從pR99剔除後,此突變株也能在鰻魚血清中存活。這些結果顯示pR99上大多數基因對生物二型菌株在鰻魚血清中存活是不必要的。
Vibrio vulnificus, a gram-negative bacterium inhabiting the estuarine water, may cause severe systemic infectious diseases in humans and eels. Strains of this bacterial species are classified into three biotypes (BTs) based on their host range and phenotypic traits, and the eel-pathogenic strains are classified as BT2. We have demonstrated that all the BT2 strains carry a common plasmid that is essential for bacterial survival in eel serum and virulence for the eel. We further found that vep07 in the virulence plasmid, pR99, of a BT2 strain, CECT4999, was an important virulence gene associated with the bacterial resistance to eel serum killing effect. However, vep07 alone is not sufficient for conveying bacterial survival in eel serum, suggesting that there may be other gene(s) in pR99 that are associated with the function of Vep07. Two approaches were used to identify the genes complementing with vep07 for survival of BT2 strains in eel serum in this study. In one approach, vep07 was coexpressed with vep20 and vep71, two other genes of pR99 previously shown to be associated with resistance to eel serum, or genes in various DNA fragment(s) from pR99. None was found to enable the plasmid-cured strain to grow in the eel serum, however. In another approach, a large-scale deletion of pR99 was conducted. Plasmid pR99 contains an rtx gene cluster of about 20 kb that is known to be dispensable for resistance to eel serum and two putative replication origins, one between vep03 and vep04 and the other within vep27. This plasmid also contains a TA (toxin-antitoxin) module, mazEF, required for plasmid stability. Deletion of DNA fragments except for vep07, vep20, vep71, the rtx gene cluster, mazEF and vep21-vep31 from pR99 did not impair the bacterial resistance to eel serum. On the other hand, the mutant deleted of vep21-vep31 from pR99 was still able to grow in the eel serum. These results together suggest that most of the genes of pR99 were not essential for the survival of BT2 strains in eel serum.
1. O'Neill, K.R., S.H. Jones, and D.J. Grimes. 1992. Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Appl Environ Microbiol 58: 3257-3262.
2. Hollis, D.G., et al. 1976. Halophilic Vibrio species isolated from blood cultures. J Clin Microbiol 3: 425-431.
3. Strom, M.S. and R.N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2: 177-188.
4. Kaspar, C.W. and M.L. Tamplin. 1993. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol 59: 2425-2429.
5. Amaro, C., et al. 1992. Electrophoretic analysis of heterogeneous lipopolysaccharides from various strains of Vibrio vulnificus biotypes 1 and 2 by silver staining and immunoblotting. Curr Microbiol 25: 99-104.
6. Chiang, S.R. and Y.C. Chuang. 2003. Vibrio vulnificus infection: clinical manifestations, pathogenesis, and antimicrobial therapy. J Microbiol Immunol Infect 36: 81-88.
7. Jones, M.K. and J.D. Oliver. 2009. Vibrio vulnificus: disease and pathogenesis. Infect Immun 77: 1723-1733.
8. Amaro, C. and E.G. Biosca. 1996. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 62: 1454-1457.
9. Amaro, C., et al. 1999. Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. Appl Environ Microbiol 65: 1352-1355.
10. Amaro, C., et al. 1995. Evidence that water transmits Vibrio vulnificus biotype 2 infections to eels. Appl Environ Microbiol 61: 1133-1137.
11. Marco-Noales, E., et al. 2001. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2). Appl Environ Microbiol 67: 4717-4725.
12. Biosca, E.G., C. Amaro, C. Esteve, E. Alcaide, and E. Garay. 1991. First record of Vibrio vulnificus biotype 2 from diseased European eel, Anguilla anguilla L. Journal of Fish Diseases 14: 103-109.
13. Tison, D.L., and M. T. Kelly. 1984. Vibrio vulnificus endometritis. J Clin Microbiol 20: 185-186.
14. Dalsgaard, A., et al. 1996. Clinical manifestations and molecular epidemiology of Vibrio vulnificus infections in Denmark. Eur J Clin Microbiol Infect Dis 15: 227-232.
15. Hoi, L., et al. 1998. Heterogeneity among isolates of Vibrio vulnificus recovered from eels (Anguilla anguilla) in Denmark. Appl Environ Microbiol 64: 4676-4682.
16. Bisharat, N., et al. 1999. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354: 1421-1424.
17. Bisharat, N., et al. 2005. Hybrid Vibrio vulnificus. Emerg Infect Dis 11: 30-35.
18. Linkous, D.A. and J.D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 174: 207-214.
19. Simpson, L.M. and J.D. Oliver. 1983. Siderophore production by Vibrio vulnificus. Infect Immun 41: 644-649.
20. Elmore, S.P., et al. 1992. Reversal of hypotension induced by Vibrio vulnificus lipopolysaccharide in the rat by inhibition of nitric oxide synthase. Microb Pathog 13: 391-397.
21. Gander, R.M. and M.T. LaRocco. 1989. Detection of piluslike structures on clinical and environmental isolates of Vibrio vulnificus. J Clin Microbiol 27: 1015-1021.
22. Lee, J.H., et al. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72: 4905-4910.
23. Wright, A.C., L.M. Simpson, and J.D. Oliver. 1981. Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect Immun 34: 503-507.
24. Shao, C.P. and L.I. Hor. 2000. Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infect Immun 68: 3569-3573.
25. Fan, J.J., et al. 2001. Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infect Immun 69: 5943-5948.
26. Lin, W., et al. 1999. Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96: 1071-1076.
27. Lally, E.T., et al. 1999. The interaction between RTX toxins and target cells. Trends Microbiol 7: 356-361.
28. Welch, R.A. 2001. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 257: 85-111.
29. Satchell, K.J. 2007. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75: 5079-5084.
30. Kim, Y.R., et al. 2008. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol 10: 848-862.
31. Lee, B.C., et al. 2008. Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76: 1509-1517.
32. Lo, H.R., et al. 2011. RTX toxin enhances the survival of vibrio vulnificus during infection by protecting the organism from phagocytosis. J Infect Dis 203: 1866-1874.
33. Lee, C.T., et al. 2008. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. J Bacteriol 190: 1638-1648.
34. Biosca, E.G., et al. 1993. Presence of a capsule in Vibrio vulnificus biotype 2 and its relationship to virulence for eels. Infect Immun 61: 1611-1618.
35. Valiente, E., et al. 2008. Role of the metalloprotease Vvp and the virulence plasmid pR99 of Vibrio vulnificus serovar E in surface colonization and fish virulence. Environ Microbiol 10: 328-338.
36. Valiente, E., et al. 2008. Role of the virulence plasmid pR99 and the metalloprotease Vvp in resistance of Vibrio vulnificus serovar E to eel innate immunity. Fish Shellfish Immunol 24: 134-141.
37. Biosca, E.G. and C. Amaro. 1996. Toxic and enzymatic activities of Vibrio vulnificus biotype 2 with respect to host specificity. Appl Environ Microbiol 62: 2331-2337.
38. Amaro, C., et al. 1997. The lipopolysaccharide O side chain of Vibrio vulnificus serogroup E is a virulence determinant for eels. Infect Immun 65: 2475-2479.
39. Biosca, E.G., et al. 1999. Comparative study of biological properties and electrophoretic characteristics of lipopolysaccharide from eel-virulent and eel-A virulent Vibrio vulnificus strains. Appl Environ Microbiol 65: 856-858.
40. 黃智育. 2010. 生物二型創傷弧菌之鰻魚毒力質體以接合方式轉移至生物一型菌株之效率及接合株之特性分析. 國立成功大學微生物暨免疫學研究所碩士論文
41. 謝政原. 2010. 創傷弧菌生物二型之毒力質體中與該菌於鰻魚血清存活相關的基因之鑑識. 國立成功大學微生物暨免疫學研究所碩士論文
42. Litwin, C.M. and S.B. Calderwood. 1993. Cloning and genetic analysis of the Vibrio vulnificus fur gene and construction of a fur mutant by in vivo marker exchange. J Bacteriol 175: 706-715.
43. Philippe, N., et al. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51: 246-255.
44. Mittenhuber, G. 1999. Occurrence of mazEF-like antitoxin/toxin systems in bacteria. J Mol Microbiol Biotechnol 1: 295-302.
45. Bouet, J.Y., K. Nordstrom, and D. Lane. 2007. Plasmid partition and incompatibility--the focus shifts. Mol Microbiol 65: 1405-1414.
46. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580.
47. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119.