簡易檢索 / 詳目顯示

研究生: 張博鈞
Chang, Po-Chun
論文名稱: 灰渣零廢棄技術研發
Zero-waste Approach for Ashes and Slags
指導教授: 王鴻博
Wang, Hong-Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 131
中文關鍵詞: 廢棄物管理循環經濟二次鋁渣焚化飛灰焚化底灰水洗法地質聚合物電容去離子地下水污染整治
外文關鍵詞: waste management, circular economy, secondary aluminum dross, incineration fly ash, incineration bottom ash, water-wash, geopolymer, capacitive deionization, groundwater remediation
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球人口快速發展,廢棄物管理備受關注。廢棄物的不當處置可能導致土壤與地下水污染,同時,廢棄物再利用被認為是循環經濟的一環,對環境有益且具經濟效益,也有助於邁向2050年廢棄物零排放目標。綠色永續理念植入廢棄物管理與污染整治時對環境友善且衝擊較小而受到關注。本研究之重點包括:(1)從二次鋁渣水解液中回收氨;(2)以地質聚合物安定化除氯焚化飛灰與底灰;(3)現地綠色永續整治受污染地下水。
      二次鋁渣為煉鋁業的廢棄物,主要由氧化鋁與會水解產生氨的氮化鋁構成,熱水可加快水解反應進行。根據實驗結果,符合收縮未反應核心模型中的反應控制模型,並計算得反應動力(19.24 kJ/mol)。氨溶液經過三個循環電容去離子設備富集流程後,濃度提高至3.7倍。
      焚化底灰(25-35%)與飛灰(1-10%)為都市垃圾焚化爐的焚化廢棄物。其中,焚化底灰廣為使用於建築材料,但飛灰因含有過量的氯與可溶性金屬,被判定為有害廢棄物。採水洗法可以降低氯含量(79%),水洗後飛灰與底灰添加氫氧化鈉與矽酸鈉以形成飛灰-底灰基地質聚合物。溶出試驗與傅立葉紅外線光譜分析顯示地質聚合物具化學穩定性。
      受污染地下水的綠色與永續整治可提供潛在淡水資源,電容去離子是一種相對較新之離子去除技術,可與P&T (泵起與整治) 法結合,設計並組裝一款新穎的試驗型電容去離子設備用於受污染地下水的現地整治。實驗結果證實CDI系統可應用於重金屬、砷與氟化物污染地下水整治,並在電流密度 (0.2 A/m2) 與流速 (0.2 L/min) 下獲得了Zn2+與AsO23-的最大鹽吸附速率,分別為 64.1與26.8μg/g·min。經過8 h的現地實驗,獲得較高的鋅去除率(60.5-64.3%),顯示CDI系統自動化連續操作的能力。

    Improper waste management may lead to soil and water contamination, meanwhile, waste recycling in a circular economy approach is becoming environmentally attractive and economically, which is also helpful to achieving the goal of zero-waste emission by 2050. Green and sustainable remediation (GSR) for waste recycling/reuse and pollution control are of increasing importance and interest. Thus the major objectives of this work were: (1) recycling of concentrated NH4+(aq) solution from hydrolysis of SAD, (2) stabilization of the dechlorided IFA with IBA to form geopolymers, and (3) in situ GSR of contaminated groundwater.
      Secondary aluminum dross discharged from the aluminum refining process contains mainly aluminum oxide and aluminum nitride was hydrolyzed for recycling of ammonia. Hot water was used to hydrolyze aluminum nitride, which was reaction-controlled in the shrinking unreacted core model (SCM) with an activation energy (Ea) of 19.24 kJ/mol. An NH4+(aq) solution enriched by 3.7 times was obtained after a 3-cycle electrosorption (capture of ions)-regeneration (enrichment of wanted ions) in the CDI process
      Incineration bottom (IBA) (25-35%) and fly ashes (IFA) (1-10%) are frequently discharged from the incineration of municipal solid wastes. Incineration bottom ash (IBA) has been widely used for construction materials while fly ash (IFA) containing excessive chloride and leachable toxic metals is classified as a hazardous waste. The water-wash method was used to reduce the chloride content and a high chloride removal efficiency (79%) was achieved. The washed IFA stabilized with IBA by additional alkaline activators NaOH and Na2SiO4 to form IFA-IBA based geopolymers that were analyzed by toxicity characteristic leaching procedure (TCLP) and FTIR, which verified their chemical stabilization.
      Green and sustainable remediation of contaminated groundwater are of increasing importance and interest for potential freshwater resources. Capacitive deionization (CDI), a green desalination method, can be integrated with pump and treat (P&T) means for in situ GSR of contaminated groundwater. A novel pilot-scale CDI system was designed and assembled for in situ GSR. The feasibility of the CDI system for heavy metal-, arsenic-, and fluoride-contaminated groundwater remediation was investigated and the maximum salt adsorption rates of Zn2+ and AsO23- (64.1 and 26.8 μg/g·min, respectively) were obtained under a current density (0.2 A/m2) and flow rate (0.2 L/min). The high zinc removal efficiency (60.5-64.3%) from an 8-h CDI field test demonstrates the feasibility of a GSR of toxic ions contaminated groundwater for cleaner water resources.

    摘要 I ABSTRACT II 致謝 IV CONTENT V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 Recycling of secondary aluminum dross 4 2.1.1 Steam extraction of secondary aluminum dross 5 2.1.2 Power generation from secondary aluminum dross recycling processes 7 2.1.3 Recycling of ammonia from secondary aluminum dross 8 2.2 Recycling of incineration bottom and fly ashes 12 2.2.1 Removal of chloride from ashes by water washing 13 2.2.2 Stabilization of MSW incineration bottom and fly ashes 15 2.3 Capacitive deionization (CDI) 19 2.3.1 Principles of CDI 19 2.3.2 Carbon electrodes 21 2.3.3 CDI process developments and applications 23 2.4 Green and sustainable remediation of metal-contaminated groundwater 31 2.4.1 Methods for remediation of metal-contaminated soil and groundwater 32 2.4.2 New green and sustainable remediation processes 32 CHAPTER 3 Experimental Materials & Methods 35 3.1 Experimental overview 35 3.2 Sampling and pretreatments of wastes and contaminated groundwaters 38 3.2.1 Secondary aluminum dross 38 3.2.2 Incineration bottom and fly ashes 38 3.2.3 Contaminated groundwaters 39 3.3 Capacitive deionization (CDI) process development 41 3.3.1 Preparation of carbon electrodes 41 3.3.2 Design and assembly of laboratory-scale CDI reactors 41 3.3.3 Design and assembly of pilot-scale (commercial unit) CDI systems 41 3.4 Recycling of secondary aluminum dross 45 3.5 Removal of chloride from ashes by water-wash treatment 46 3.6 Stabilization of incineration bottom and fly ashes 47 3.7 Characteristic 48 3.7.1 Scanning Electron Microscope (SEM) 48 3.7.2 X-ray Fluorescence (XRF) 48 3.7.3 X-ray Diffractometer spectroscopy (XRD) 48 3.7.4 Nuclear Magnetic Resonance spectroscopy (NMR) 48 3.7.5 Fourier-transform infrared spectroscopy (FTIR) 48 3.7.6 Nitrogen adsorption isotherm 49 3.7.7 Inductively Coupled Plasma-Mass spectrometer (ICP-MS) 49 3.7.8 Total Organic Carbon (TOC) analyzer 49 3.7.9 Elemental Analysis (EA) 49 CHAPTER 4 RESULTS AND DISCUSSION 50 4.1 Recycling of ammonia from secondary aluminum dross by capacitive deionization 50 4.1.1 Introduction 52 4.1.2 Experimental materials & methods 53 4.1.3 Results and Discussion 56 4.1.4 Summary 64 4.2 Stabilization of MSW incineration bottom and fly ashes 69 4.2.1 Introduction 71 4.2.2 Experimental Materials & Methods 72 4.2.3 Results and Discussion 75 4.2.4 Summary 89 4.3 In situ remediation of contaminated groundwater by capacitive deionization 93 4.3.1 Introduction 95 4.3.2 Experimental methods 97 4.3.3 Results and Discussion 99 4.3.4 Summary 108 CHAPTER 5 CONCLUSIONS 113 REFERENCES 114 Curriculum Vitae 130

    Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A., & Rafique, S. (2021, Aug 20). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep, 11(1), 17006.

    Alam, Q., Lazaro, A., Schollbach, K., & Brouwers, H. J. H. (2020, Feb). Chemical speciation, distribution and leaching behavior of chlorides from municipal solid waste incineration bottom ash. Chemosphere, 241, 124985.

    Alipour Atmianlu, P., Badpa, R., Aghabalaei, V., & Baghdadi, M. (2021). A review on the various beds used for immobilization of nanoparticles: Overcoming the barrier to nanoparticle applications in water and wastewater treatment. Journal of Environmental Chemical Engineering, 9(6).

    Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251.

    Aslam, M. M.-A., Kuo, H.-W., Den, W., Usman, M., Sultan, M., & Ashraf, H. (2021). Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability, 13(10).

    Assi, A., Bilo, F., Zanoletti, A., Ponti, J., Valsesia, A., La Spina, R., Zacco, A., & Bontempi, E. (2020). Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash. Journal of Cleaner Production, 245.

    Attia, N., Hassan, K. M., & Hassan, M. I. (2018, 2018//). Environmental Impacts of Aluminum Dross After Metal Extraction. Light Metals 2018, Cham.

    Azeez, N. A., Dash, S. S., Gummadi, S. N., & Deepa, V. S. (2021, Mar). Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]. Chemosphere, 266, 129204.

    Banik, B. K., Sahoo, B. M., Kumar, B., Panda, K. C., Jena, J., Mahapatra, M. K., & Borah, P. (2021, Feb 22). Green Synthetic Approach: An Efficient Eco-Friendly Tool for Synthesis of Biologically Active Oxadiazole Derivatives. Molecules, 26(4).

    Bawab, J., Khatib, J., Kenai, S., & Sonebi, M. (2021). A Review on Cementitious Materials Including Municipal Solid Waste Incineration Bottom Ash (MSWI-BA) as Aggregates. Buildings, 11(5).

    Beheshti, R., Moosberg-Bustnes, J., Akhtar, S., & Aune, R. E. (2014, 2014/11/01). Black Dross: Processing Salt Removal from Black Dross by Thermal Treatment. Jom, 66(11), 2243-2252.

    Bernasconi, D., Caviglia, C., Destefanis, E., Agostino, A., Boero, R., Marinoni, N., Bonadiman, C., & Pavese, A. (2022, Feb 1). Influence of speciation distribution and particle size on heavy metal leaching from MSWI fly ash. Waste Manag, 138, 318-327.

    Bian, H., Wan, J., Muhammad, T., Wang, G., Sang, L., Jiang, L., Wang, H., Zhang, Y., Peng, C., Zhang, W., Cao, X., & Lou, Z. (2021, May 1). Computational study and optimization experiment of nZVI modified by anionic and cationic polymer for Cr(VI) stabilization in soil: Kinetics and response surface methodology (RSM). Environ Pollut, 276, 116745.

    Brough, D., & Jouhara, H. (2020). The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids, 1-2.

    Cao, Y.-n., Luo, J.-j., & Sun, S.-q. (2021). Characteristics of MSWI fly ash with acid leaching treatment. Journal of Fuel Chemistry and Technology, 49(8), 1208-1218.

    Caudle, D. D., Tucker, J. H., Cooper, J. L., Arnold, B. B., & Papastamataki, A. (1966). Electrochemical demineralization of water with carbon electrodes. Oklahoma University Research Institute.

    Chen, L., Wang, Y. S., Wang, L., Zhang, Y., Li, J., Tong, L., Hu, Q., Dai, J. G., & Tsang, D. C. W. (2021, Apr 15). Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement. J Hazard Mater, 408, 124404.

    Chen, R., Sheehan, T., Ng, J. L., Brucks, M., & Su, X. (2020, Feb). Capacitive deionization and electrosorption for heavy metal removal [Review]. Environmental Science-Water Research & Technology, 6(2), 258-282.

    Chen, W. S., Chang, F. C., Shen, Y. H., Tsai, M. S., & Ko, C. H. (2012, Oct 30). Removal of chloride from MSWI fly ash. J Hazard Mater, 237-238, 116-120.

    Chen, X., Bi, Y., Zhang, H., & Wang, J. (2016). Chlorides Removal and Control through Water-washing Process on MSWI Fly Ash. Procedia Environmental Sciences, 31, 560-566.

    Chen, Z., Lu, S., Tang, M., Ding, J., Buekens, A., Yang, J., Qiu, Q., & Yan, J. (2019, Apr 1). Mechanical activation of fly ash from MSWI for utilization in cementitious materials. Waste Manag, 88, 182-190.

    Crapse, J., Pappireddi, N., Gupta, M., Shvartsman, S. Y., Wieschaus, E., & Wuhr, M. (2021, Aug). Evaluating the Arrhenius equation for developmental processes. Mol Syst Biol, 17(8), e9895.

    Datar, S. D., Mohanapriya, K., Ahirrao, D. J., & Jha, N. (2021). Comparative study of electrosorption performance of solar reduced graphene oxide in flow-between and flow-through capacitive deionization architectures. Separation and Purification Technology, 257.

    David, E., & Kopac, J. (2012, Mar 30). Hydrolysis of aluminum dross material to achieve zero hazardous waste. J Hazard Mater, 209-210, 501-509.

    Dontriros, S., Likitlersuang, S., & Janjaroen, D. (2020, Jan 1). Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): Effect of acid-base solutions. Waste Management, 101, 44-53.

    Du, B., Li, J., Fang, W., Liu, Y., Yu, S., Li, Y., & Liu, J. (2018, Oct). Characterization of naturally aged cement-solidified MSWI fly ash. Waste Manag, 80, 101-111.

    Fan, C., Wang, B., Qi, Y., & Liu, Z. (2021, Jul 15). Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Waste Manag, 131, 277-285.

    Fei, L., Bilal, M., Qamar, S. A., Imran, H. M., Riasat, A., Jahangeer, M., Ghafoor, M., Ali, N., & Iqbal, H. M. N. (2022, Mar 10). Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. Environ Res, 211, 113060.

    Feng, J., Xiong, S., Ren, L., & Wang, Y. (2022). Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water. Chinese Journal of Chemical Engineering, 45, 15-21.

    Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H. S., Lokuge, W., Aravinthan, T., & Schubel, P. (2021). Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling, 173.

    Foo, C. T., Salleh, M. A. M., Ying, K. K., & Matori, K. A. (2019). Mineralogy and thermal expansion study of mullite-based ceramics synthesized from coal fly ash and aluminum dross industrial wastes. Ceramics International, 45(6), 7488-7494.

    Gamaethiralalage, J. G., Singh, K., Sahin, S., Yoon, J., Elimelech, M., Suss, M. E., Liang, P., Biesheuvel, P. M., Zornitta, R. L., & de Smet, L. C. P. M. (2021). Recent advances in ion selectivity with capacitive deionization. Energy & Environmental Science, 14(3), 1095-1120.

    Gao, Y., Li, Z., Fu, Z., Zhang, H., Wang, G., & Zhou, H. (2021). Highly selective capacitive deionization of copper ions in FeS2@N, S co-doped carbon electrode from wastewater. Separation and Purification Technology, 262.

    Garcia-Quintero, A., & Palencia, M. (2021, Nov 1). A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology. Sci Total Environ, 793, 148524.

    Geng, C., Chen, C., Shi, X., Wu, S., Jia, Y., Du, B., & Liu, J. (2020). Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process. Resources, Conservation and Recycling, 154.

    Gokelma, M., Vallejo-Olivares, A., & Tranell, G. (2021, Jul 1). Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash. Waste Manag, 130, 65-73.

    Guo, J., Xu, X., Hill, J. P., Wang, L., Dang, J., Kang, Y., Li, Y., Guan, W., & Yamauchi, Y. (2021, Aug 4). Graphene-carbon 2D heterostructures with hierarchically-porous P,N-doped layered architecture for capacitive deionization. Chem Sci, 12(30), 10334-10340.

    Han, B., Cheng, G., Wang, Y., & Wang, X. (2019). Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization. Chemical Engineering Journal, 360, 364-384.

    He, C., Hu, A., Wang, F., Zhang, P., Zhao, Z., Zhao, Y., & Liu, X. (2021). Effective remediation of cadmium and zinc co-contaminated soil by electrokinetic-permeable reactive barrier with a pretreatment of complexing agent and microorganism. Chemical Engineering Journal, 407.

    He, D., Wong, C. E., Tang, W. W., Kovalsky, P., & Waite, T. D. (2016, May). Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization [Article]. Environmental Science & Technology Letters, 3(5), 222-226.

    Hosseini, S., Brake, N. A., Nikookar, M., Günaydın-Şen, Ö., & Snyder, H. A. (2021). Mechanochemically activated bottom ash-fly ash geopolymer. Cement and Concrete Composites, 118.

    Hsiao, A.-c. (2019). New fluidized capacitive deionization of salt (waste water with recycling of noble metal and water. MS thesis.

    Huang, X. L., Badawy, A. E., Arambewela, M., Ford, R., Barlaz, M., & Tolaymat, T. (2014, May 30). Characterization of salt cake from secondary aluminum production. J Hazard Mater, 273, 192-199.

    Huang, X. L., & Tolaymat, T. (2019, Apr 1). Gas quantity and composition from the hydrolysis of salt cake from secondary aluminum processing. Int J Environ Sci Technol (Tehran), 16(4), 1955-1966.

    Huang, Y., Huang, X., Ma, M., Hu, C., Seidi, F., Yin, S., & Xiao, H. (2021). Recent advances on the bacterial cellulose-derived carbon aerogels. Journal of Materials Chemistry C, 9(3), 818-828.

    Hussain, A., Rehman, F., Rafeeq, H., Waqas, M., Asghar, A., Afsheen, N., Rahdar, A., Bilal, M., & Iqbal, H. M. N. (2022, Feb). In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. Chemosphere, 289, 133252.

    Iqbal, M. W., Kang, Y., & Jeon, H. W. (2020). Zero waste strategy for green supply chain management with minimization of energy consumption. Journal of Cleaner Production, 245.

    Jena, S. K., Sadasivam, R., Packirisamy, G., & Saravanan, P. (2021, Jul 1). Nanoremediation: Sunlight mediated dye degradation using electrospun PAN/CuO-ZnO nanofibrous composites. Environ Pollut, 280, 116964.

    Jeon, S.-i., Park, H.-r., Yeo, J.-g., Yang, S., Cho, C. H., Han, M. H., & Kim, D. K. (2013). Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 6(5).

    Jia, B. P., & Zhang, W. (2016, Feb). Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review [Review]. Nanoscale Research Letters, 11, 25, Article 64.

    Jia, L., Liu, H., Kong, Q., Li, M., Wu, S., & Wu, H. (2020, Feb 1). Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water Res, 169, 115285.

    Jiang, H., Zhang, J., Luo, K., Xing, W., Du, J., Dong, Y., Li, X., & Tang, W. (2022, Jan 15). Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode. Sci Total Environ, 804, 150166.

    Jiménez, A., Rives, V., Vicente, M. A., & Gil, A. (2022). A comparative study of acid and alkaline aluminum extraction valorization procedure for aluminum saline slags. Journal of Environmental Chemical Engineering, 10(3).

    Jin, Y., Wang, L., Song, Y., Zhu, J., Qin, M., Wu, L., Hu, P., Li, F., Fang, L., Chen, C., & Hou, D. (2021, Sep 7). Integrated Life Cycle Assessment for Sustainable Remediation of Contaminated Agricultural Soil in China. Environ Sci Technol, 55(17), 12032-12042.

    Joseph, A. M., Snellings, R., Van den Heede, P., Matthys, S., & De Belie, N. (2018, Jan 16). The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials (Basel), 11(1).

    Kale, M., Yılmaz, İ. H., Kaya, A., Çetin, A. E., & Söylemez, M. S. (2022). Pilot-scale hydrogen generation from the hydrolysis of black aluminum dross without any catalyst. Journal of the Energy Institute, 100, 99-108.

    Kalfa, A., Shapira, B., Shopin, A., Cohen, I., Avraham, E., & Aurbach, D. (2020). Capacitive deionization for wastewater treatment: Opportunities and challenges. Chemosphere, 241, 125003.

    Kang, D., Son, J., Yoo, Y., Park, S., Huh, I.-S., & Park, J. (2020). Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure. Chemical Engineering Journal, 380.

    Kanhar, A. H., Chen, S., & Wang, F. (2020). Incineration Fly Ash and Its Treatment to Possible Utilization: A Review. Energies, 13(24).

    Keiller, B. G., Potter, M., Burton, R. A., & van Eyk, P. J. (2021). Elucidating the degradation reaction pathways for the hydrothermal carbonisation of hemp via biochemical compositional analysis. Fuel, 294.

    Kim, N., Lee, J., Kim, S., Hong, S. P., Lee, C., Yoon, J., & Kim, C. (2020, Jan). Short Review of Multichannel Membrane Capacitive Deionization: Principle, Current Status, and Future Prospect [Review]. Applied Sciences-Basel, 10(2), 14, Article 683.

    Lee, N., Liu, M. L., Wu, M. C., Chen, T. H., & Hou, C. H. (2021, Jul). The effect of redox potential on the removal characteristic of divalent cations during activated carbon-based capacitive deionization. Chemosphere, 274, 129762.

    Li, C.-P., Wu, Y.-Q., Zhang, F.-Y., Gao, L.-X., Zhang, D.-Q., & An, Z.-X. (2021a). Capacitive deionization of NaCl solution with hierarchical porous carbon materials derived from Mg-MOFs. Separation and Purification Technology, 277.

    Li, P., Guo, M., Zhang, M., Teng, L., & Seetharaman, S. (2012). Leaching Process Investigation of Secondary Aluminum Dross: The Effect of CO2 on Leaching Process of Salt Cake from Aluminum Remelting Process. Metallurgical and Materials Transactions B, 43(5), 1220-1230.

    Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021b, Jan). Sources and Consequences of Groundwater Contamination. Arch Environ Contam Toxicol, 80(1), 1-10.

    Li, Q., Yang, Q., Zhang, G., & Shi, Q. (2018). Investigations on the hydrolysis behavior of AlN in the leaching process of secondary aluminum dross. Hydrometallurgy, 182, 121-127.

    Li, W., Yu, Q., Gu, K., Sun, Y., Wang, Y., Zhang, P., Zheng, Z., Guo, Y., Xin, M., & Bian, R. (2022, Jan 10). Stability evaluation of potentially toxic elements in MSWI fly ash during carbonation in view of two leaching scenarios. Sci Total Environ, 803, 150135.

    Li, Y., Qin, Z., Li, C., Qu, Y., Wang, H., Peng, L., & Wang, Y. (2021c). Hazardous characteristics and transformation mechanism in hydrometallurgical disposing strategy of secondary aluminum dross. Journal of Environmental Chemical Engineering, 9(6).

    Li, Y., Wu, J., Yong, T., Fei, Y., & Qi, J. (2021d, Oct). Investigation of bromide removal and bromate minimization of membrane capacitive deionization for drinking water treatment. Chemosphere, 280, 130857.

    Li, Z., Mao, S., Yang, Y., Sun, Z., & Zhao, R. (2021e, Mar). Controllable synthesis of a hollow core-shell Co-Fe layered double hydroxide derived from Co-MOF and its application in capacitive deionization. J Colloid Interface Sci, 585, 85-94.

    Liu, J., Wang, S., Peng, Y., Zhu, J., Zhao, W., & Liu, X. (2021a). Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability. Progress in Polymer Science, 113.

    Liu, K., Li, F., Zhao, X., Wang, G., & Fang, L. (2021b). The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI: Surface area versus electrochemical property. Chemical Engineering Journal, 406.

    Liu, N.-W., & Chou, M.-S. (2013a). Degree of Hazardous Reduction of Secondary Aluminum Dross Using Ferrous Chloride. Journal of Hazardous, Toxic, and Radioactive Waste, 17(2).

    Liu, N. W., & Chou, M. S. (2013b, 01/01). Reduction of secondary aluminum dross by a waste pickling liquor containing ferrous chloride. Sustainable Environment Research, 23, 61-67.

    Liu, X., Zhao, X., Yin, H., Chen, J., & Zhang, N. (2018, May 5). Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior. J Hazard Mater, 349, 262-271.

    Loginova, E., Proskurnin, M., & Brouwers, H. J. H. (2019, Apr 1). Municipal solid waste incineration (MSWI) fly ash composition analysis: A case study of combined chelatant-based washing treatment efficiency. J Environ Manage, 235, 480-488.

    Lu, H., Wang, J., Hao, H., & Wang, T. (2017, Sep 30). Magnetically Separable MoS(2)/Fe(3)O(4)/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr(VI) and 4-Chlorophenol. Nanomaterials (Basel), 7(10).

    Lv, H., Zhao, H., Zuo, Z., Li, R., & Liu, F. (2020). A thermodynamic and kinetic study of catalyzed hydrolysis of aluminum nitride in secondary aluminum dross. Journal of Materials Research and Technology, 9(5), 9735-9745.

    Mahinroosta, M., & Allahverdi, A. (2018). A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. Journal of Cleaner Production, 179, 93-102.

    Mao, Y., Wu, H., Wang, W., Jia, M., & Che, X. (2020, Mar 5). Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material. J Hazard Mater, 385, 121580.

    Marcon, L., Oliveras, J., & Puntes, V. F. (2021, Oct 15). In situ nanoremediation of soils and groundwaters from the nanoparticle's standpoint: A review. Sci Total Environ, 791, 148324.

    McKague, M., Fathiannasab, H., Agnaou, M., Sadeghi, M. A., & Gostick, J. (2022). Extending pore network models to include electrical double layer effects in micropores for studying capacitive deionization. Desalination, 535.

    Mohd Basri, M. S., Mustapha, F., Mazlan, N., & Ishak, M. R. (2021, Dec 14). Rice Husk Ash-Based Geopolymer Binder: Compressive Strength, Optimize Composition, FTIR Spectroscopy, Microstructural, and Potential as Fire-Retardant Material. Polymers (Basel), 13(24).

    Nguyen, T. T., Huynh, L. T. N., Pham, T. N., Tran, T. N., Ho, T. T. N., Nguyen, T. D., Nguyen, T. T. T., Vo, T. K. A., Pham, G. V., Le, V. H., Le, T. T., Nguyen, T. H., Thai, H., Le, T. L., & Tran, D. L. (2021). Enhanced capacitive deionization performance of activated carbon derived from coconut shell electrodes with low content carbon nanotubes–graphene synergistic hybrid additive. Materials Letters, 292.

    Oldham, K. B. (2008). A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. Journal of Electroanalytical Chemistry, 613(2), 131-138.

    Padamata, S. K., Yasinskiy, A., & Polyakov, P. (2021). A Review of Secondary Aluminum Production and Its Byproducts. Jom, 73(9), 2603-2614.

    Pasta, M., Wessells, C. D., Cui, Y., & La Mantia, F. (2012, Feb 8). A desalination battery. Nano Letters, 12(2), 839-843.

    Ramaswamy, Wong, N. E., & Shimizu, G. K. H. (2019a). Utilization of aluminum dross: Refractories from industrial waste. Chem. Soc. Rev., 378, 577-594.

    Ramaswamy, P., Ranjit, S., Bhattacharjee, S., & Avijit Gomes, S. (2019b). Synthesis of high temperature (1150 °C) resistant materials after extraction of oxides of Al and Mg from Aluminum dross. Materials Today: Proceedings, 19, 670-675.

    Ramos, R., & Regulacio, M. D. (2021, Mar 23). Controllable Synthesis of Bimetallic Nanostructures Using Biogenic Reagents: A Green Perspective. ACS Omega, 6(11), 7212-7228.

    Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073-1078.

    Ribeiro, A. B., & Mateus, E. P. (2016). Book_Electrokinetics Across Disciplin and Continents.

    Rosecky, M., Somplak, R., Slavik, J., Kalina, J., Bulkova, G., & Bednar, J. (2021, Aug 1). Predictive modelling as a tool for effective municipal waste management policy at different territorial levels. J Environ Manage, 291, 112584.

    Roy, N. K., Murphy, A., & Costa, M. (2020, Sep 22). Arsenic Methyltransferase and Methylation of Inorganic Arsenic. Biomolecules, 10(9).

    Sahu, M. K., Patel, R. K., & Kurwadkar, S. (2022, 2022/04/01/). Mechanistic insight into the adsorption of mercury (II) on the surface of red mud supported nanoscale zero-valent iron composite. Journal of Contaminant Hydrology, 246, 103959.

    Salari, K., Zarafshan, P., Khashehchi, M., Chegini, G., Etezadi, H., Karami, H., Szulżyk-Cieplak, J., & Łagód, G. (2022). Knowledge and Technology Used in Capacitive Deionization of Water. Membranes, 12(5).

    Sayed, E. T., Al Radi, M., Ahmad, A., Abdelkareem, M. A., Alawadhi, H., Atieh, M. A., & Olabi, A. G. (2021, Jul). Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater. Chemosphere, 275, 130001.

    Shao, N., Wei, X., Monasterio, M., Dong, Z., & Zhang, Z. (2021a, May 1). Performance and mechanism of mold-pressing alkali-activated material from MSWI fly ash for its heavy metals solidification. Waste Manag, 126, 747-753.

    Shao, X., Wang, F., Bardos, R. P., Sang, Y., Ren, Y., Qin, M., & Wang, H. (2021b). A Questionnaire Survey on Contaminated Site Regulators’ View of Implementing Green and Sustainable Remediation in China. Sustainability, 13(21).

    Shen, H., Liu, B., Ekberg, C., & Zhang, S. (2021a, Mar 15). Harmless disposal and resource utilization for secondary aluminum dross: A review. Sci Total Environ, 760, 143968.

    Shen, H., Liu, B., Shi, Z., Zhao, S., Zhang, J., & Zhang, S. (2021b, Sep 15). Reduction for heavy metals in pickling sludge with aluminum nitride in secondary aluminum dross by pyrometallurgy, followed by glass ceramics manufacture. J Hazard Mater, 418, 126331.

    Shinzato, M. C., & Hypolito, R. (2016). Effect of disposal of aluminum recycling waste in soil and water bodies. Environmental Earth Sciences, 75(7).

    Shiu, H.-Y., Lee, M., Chao, Y., Chang, K.-C., Hou, C.-H., & Chiueh, P.-T. (2019). Hotspot analysis and improvement schemes for capacitive deionization (CDI) using life cycle assessment. Desalination, 468.

    Singh, K., Sahin, S., Gamaethiralalage, J. G., Zornitta, R. L., & de Smet, L. C. P. M. (2022). Simultaneous, monovalent ion selectivity with polyelectrolyte multilayers and intercalation electrodes in capacitive deionization. Chemical Engineering Journal, 432.

    Siriwardane, I. W., Rathuwadu, N. P. W., Dahanayake, D., Sandaruwan, C., de Silva, R. M., & de Silva, K. M. N. (2021). Nano-manganese oxide and reduced graphene oxide-incorporated polyacrylonitrile fiber mats as an electrode material for capacitive deionization (CDI) technology. Nanoscale Advances, 3(9), 2585-2597.

    Stern, O. (1924). Zur theorie der elektrolytischen doppelschicht. Z.Elektrochem.Angew.Phys.Chem., 30, 508-516.

    Sternberg, J., Sequerth, O., & Pilla, S. (2021). Green chemistry design in polymers derived from lignin: review and perspective. Progress in Polymer Science, 113.

    Sufiani, O., Elisadiki, J., Machunda, R. L., & Jande, Y. A. C. (2019). Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. Journal of Electroanalytical Chemistry, 848, 113328.

    Tang, J., Liu, G., Qi, T., Zhou, Q., Peng, Z., Li, X., Yan, H., & Hao, H. (2022). Two-stage process for the safe utilization of secondary aluminum dross in combination with the Bayer process. Hydrometallurgy, 209.

    Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., Wang, D., & Zeng, G. (2019). Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research, 150, 225-251.

    Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069.

    Tian, S., Zhang, X., & Zhang, Z. (2020). Capacitive deionization with MoS2/g-C3N4 electrodes. Desalination, 479.

    Tokatli, C., & Varol, M. (2021, Oct). Variations, health risks, pollution status and possible sources of dissolved toxic metal(loid)s in stagnant water bodies located in an intensive agricultural region of Turkey. Environ Res, 201, 111571.

    Tong, Y., Zhou, S., Zhou, J., Zhang, G., Li, X., Zhao, C., & Liu, P. (2021). Advances in efficient desalination technology of capacitive deionization for water recycling. Journal of Water Reuse and Desalination, 11(2), 189-200.

    Tsai, S.-W., Hackl, L., Kumar, A., & Hou, C.-H. (2021). Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Desalination, 497.

    Wadi, V. S., Ibrahim, Y., Arangadi, A. F., Kilybay, A., Mavukkandy, M. O., Alhseinat, E., & Hasan, S. W. (2022). Three‐dimensional graphene/MWCNT-MnO2 nanocomposites for high‐performance capacitive deionization (CDI) application. Journal of Electroanalytical Chemistry, 914.

    Wang, H. Paul, Liu, S.-H., Sun,Y.-B., Duan, Y.-J., Chen, P.-A., Chang, P.-C., Wu, T.-E. (2022) In situ remediation of a heavy metal contaminated groundwater by fluidized capacitive deionization, Project report, EPA, ROC.

    Wang, L., Ok, Y. S., Tsang, D. C. W., Alessi, D. S., Rinklebe, J., Mašek, O., Bolan, N. S., & Hou, D. (2021a). Biochar composites: Emerging trends, field successes and sustainability implications. Soil Use and Management, 38(1), 14-38.

    Wang, L., Rinklebe, J., Tack, F. M. G., & Hou, D. (2021b). A review of green remediation strategies for heavy metal contaminated soil. Soil Use and Management, 37(4), 936-963.

    Wang, L., Zhang, Y., Chen, L., Guo, B., Tan, Y., Sasaki, K., & Tsang, D. C. W. (2022a, Feb 5). Designing novel magnesium oxysulfate cement for stabilization/solidification of municipal solid waste incineration fly ash. J Hazard Mater, 423(Pt A), 127025.

    Wang, R., Sun, K., Zhang, Y., Qian, C., & Bao, W. (2022b). Dimensional optimization enables high-performance capacitive deionization. Journal of Materials Chemistry A, 10(12), 6414-6441.

    Wang, X., Li, G., & Eckhoff, R. K. (2021c). Kinetics study of hydration reaction between aluminum powder and water based on an improved multi-stage shrinking core model. International Journal of Hydrogen Energy, 46(67), 33635-33655.

    Wang, Y., Li, A., & Cui, C. (2021d, Feb). Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere, 265, 129071.

    Wanitsawatwichai, K., & Sampanpanish, P. (2021, Aug). The combination of phytoremediation and electrokinetics remediation technology on arsenic contaminated remediation in tailing storage facilities from gold mine. Heliyon, 7(8), e07736.

    Wijekoon, P., Koliyabandara, P. A., Cooray, A. T., Lam, S. S., Athapattu, B. C. L., & Vithanage, M. (2022, Jan 5). Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. J Hazard Mater, 421, 126627.

    Xiang, J., Qiu, J., Li, Z., Chen, J., & Song, Y. (2022). Eco-friendly treatment for MSWI bottom ash applied to supplementary cementing: Mechanical properties and heavy metal leaching concentration evaluation. Construction and Building Materials, 327.

    Xiang, S., Liu, Y., Zhang, G., Ruan, R., Wang, Y., Wu, X., Zheng, H., Zhang, Q., & Cao, L. (2020, Aug 28). New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J Microbiol Biotechnol, 36(10), 144.

    Xiong, S., Ren, L., Zhang, C., Zhou, J., & Wang, Y. (2021). Block copolymer coated carbon nanotube membrane anodes for enhanced and multipurpose hybrid capacitive deionization. Desalination, 520.

    Xu, S., Hu, H., Guo, G., Gong, L., Liu, H., & Yao, H. (2022, Jan 5). Investigation of properties change in the reacted molten salts after molten chlorides cyclic thermal treatment of toxic MSWI fly ash. J Hazard Mater, 421, 126536.

    Xu, X. T., Allah, A. E., Wang, C., Tan, H. B., Farghali, A. A., Khedr, M. H., Malgras, V., Yang, T., & Yamauchi, Y. (2019, Apr). Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination [Article]. Chemical Engineering Journal, 362, 887-896.

    Xue, Y., & Liu, X. (2021). Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review. Chemical Engineering Journal, 420.

    Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218-235.

    Yang, F., He, Y., Rosentsvit, L., Suss, M. E., Zhang, X., Gao, T., & Liang, P. (2021, Jul 15). Flow-electrode capacitive deionization: A review and new perspectives. Water Res, 200, 117222.

    Yang, G., Ren, Q., Zhou, L., Li, P., & Lyu, Q. (2022). Effect of Si/Al additives on Cl fate during MSWI fly ash thermal treating process. Fuel Processing Technology, 231.

    Yang, Q., Li, Q., Zhang, G., Shi, Q., & Feng, H. (2019). Investigation of leaching kinetics of aluminum extraction from secondary aluminum dross with use of hydrochloric acid. Hydrometallurgy, 187, 158-167.

    Yang, S., Saffarzadeh, A., Shimaoka, T., & Kawano, T. (2014, Feb 28). Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment. J Hazard Mater, 267, 214-220.

    Yang, Z., Tian, S., Ji, R., Liu, L., Wang, X., & Zhang, Z. (2017, Oct). Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration. Waste Manag, 68, 221-231.

    Yoon, H., Lee, J., Kim, S., & Yoon, J. (2019). Review of concepts and applications of electrochemical ion separation (EIONS) process. Separation and Purification Technology, 215, 190-207.

    Zhan, X., Wang, L., Hu, C., Gong, J., Xu, T., Li, J., Yang, L., Bai, J., & Zhong, S. (2018, Dec). Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system. Waste Manag, 82, 62-70.

    Zhan, X., Wang, L., Wang, L., Gong, J., Wang, X., Song, X., & Xu, T. (2021, Jan). Co-sintering MSWI fly ash with electrolytic manganese residue and coal fly ash for lightweight ceramisite. Chemosphere, 263, 127914.

    Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Research, 128, 314-330.

    Zhang, C., Ma, J., & Waite, T. D. (2019). Ammonia-Rich Solution Production from Wastewaters Using Chemical-Free Flow-Electrode Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 7(7), 6480-6485.

    Zhang, C., Wang, M., Xiao, W., Ma, J., Sun, J., Mo, H., & Waite, T. D. (2021, Feb 1). Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). Water Res, 189, 116653.

    Zhang, S., Chen, Z., Lin, X., Wang, F., & Yan, J. (2020). Kinetics and fusion characteristics of municipal solid waste incineration fly ash during thermal treatment. Fuel, 279.

    Zhang, Y., Wu, J., Zhang, S., Shang, N., Zhao, X., Alshehri, S. M., Ahamad, T., Yamauchi, Y., Xu, X., & Bando, Y. (2022). MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy, 97.

    Zhao, K., Hu, Y., Tian, Y., Chen, D., & Feng, Y. (2020, Feb). Chlorine removal from MSWI fly ash by thermal treatment: Effects of iron/aluminum additives. J Environ Sci (China), 88, 112-121.

    Zuo, Z., Lv, H., Li, R., Liu, F., & Zhao, H. (2021). A new approach to recover the valuable elements in black aluminum dross. Resources, Conservation and Recycling, 174.

    無法下載圖示 校內:2027-07-31公開
    校外:2027-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE