| 研究生: |
廖家德 Liao, Chia-Te |
|---|---|
| 論文名稱: |
分析不同心血管疾病治療和預防策略在不同亞群體中的有效性和經濟可行性 Analysis of the Effectiveness and Economic Viability of Different Cardiovascular Disease Treatment and Prevention Strategies in Various Subpopulations |
| 指導教授: |
莊佳蓉
Strong, Carol |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 公共衛生學系 Department of Public Health |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 486 |
| 中文關鍵詞: | 實效研究 、醫療經濟 、臨床效果 、成本效益 、心血管醫學 、整合照護 |
| 外文關鍵詞: | Outcome research, Health economics, Effectiveness, Cost-effectiveness, Cardiovascular science, Integrated care |
| 相關次數: | 點閱:145 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本博士論文集探討了各種心血管疾病治療和預防策略在各個次族群中的有效性和經濟可行性。本研究評估了心血管疾病治療和預防措施的現狀,包括對新藥物和干預的健康技術評估,以及現行指引建議的評估。這些發現為心血管疾病領域的臨床工作者和政策制定者提供了有用的信息,更深入地了解現有和新治療和預防方法的有效性以及對不同次族群的影響。
第2章分析了不同治療和二級預防策略在具有心房顫動或冠狀動脈疾病的不同亞群中的有效性和成本效益。非維生素K抗凝劑(NOAC)常用於預防房顫患者中的中風。第2.1節建立了一個基於臨床隨機對照試驗(RCTs)的馬可夫模型,模擬使用NOAC預防中風的台灣心房顫動患者,與使用傳統的抗凝劑(如華法林)的患者進行比較。隨後,使用國民健康保險數據庫的當地醫療費用和效用數據評估非維生素K抗凝劑在心房顫動患者中的預防中風的經濟可行性。由于不同的非維生素K抗凝劑之間缺乏直接比較,本研究先進行了網絡統合分析以獲得間接有效性比較。經過30年的模型模擬,所有非維生素K抗凝劑的增量成本效益比在每個品質調整生命年介於$4115至$6415之間,遠低於願意支付的閾值(一倍台灣國內人均生產總值)。也就是說,從台灣健康保險健保的角度來看,所有非維生素K抗凝劑都是華法林在心房顫動患者中預防中風的有效替代療法。此外,對於edoxaban 60毫克,rivaroxaban 20和15毫克,apixaban 5毫克和dabigatran 150和110毫克而言,具有最佳成本效益的概率分別為27.4%,27.1%,23.6%和21.9%。第2.2節檢驗了心肌梗死患者中心導管介入治療的成本效益。本研究基於1999年至2015年台灣國民健康保險資料庫,建立了一個長期追蹤的心肌梗塞病人世代,以估計心臟介入治療和醫療治療的預期壽命、壽命損失、多得到壽命和相對的壽命醫療成本。增量成本效益比為為$3,488。此外,在調整年齡後,50-59歲接受心導管介入治療的急性心肌梗死患者被證明是節省終生醫療花費的。
第3章聚焦於心臟衰竭且射血分數減低(HFrEF)的患者。第3.1節探討了ivabradine與急性HFrEF患者不良事件之間的關聯。在1:2傾向分數匹配后,共有876名患者納入最終分析。在一年的追蹤中,ivabradine組患者與沒有使用的相比較,心率顯著較低(77.6 ± 14.7 vs. 81.1 ± 16.3每分鐘下),心臟衰竭嚴重程度也有所降低,與非ivabradine組患者相比。使用ivabradine與心血管死亡(每100人年5.8 個vs. 12.2個)、全因死亡(每100人年7.2 個vs. 14.0個)以及總心臟衰竭再住院(每100人年42.3 vs. 72.6)的風險顯著較低。章節3.2和3.3分析了鈉葡萄糖轉運蛋白-2(SGLT2)抑製劑 (dapagliflozin和empagliflozin)加入心臟衰竭標准治療的成本效益。這兩項經濟評估研究建立了馬可夫模型,以估計加入SGLT2 抑製劑和非 SGLT2 抑製劑治療的終生醫療費用和品質調整生命年。隨後,增量成本效益比被用於評估不同亞太地區國家醫療付費者角度的成本效益。第3.2節表明,在韓國、澳大利亞、台灣、日本和新加坡,與標准治療相比,使用dapagliflozin的增量成本效益比分別為每得到一個品質調整生命年需要$5,277 、$9,980、$12,305、$16,705和$23,227。所有模擬都在低於亞太地區每一個願意付出的閾值(國內生產總值人均),其顯示了成本效益的好處。第3.3節,該模型預測將輔助藥物empagliflozin 加入HFrEF標准治療后的增量成本效益比分別為每獲得一個品質調整生命年需要$20,508,$24,046,$8,846, $53,791,$21,543和$20,982在台灣、日本、南韓、新加坡、泰國、澳大利亞。研究最後指出將empagliflozin加入HFrEF治療在亞太地區是一個有效的成本選擇。
第4章重點關注於高血壓患者。第4.1節利用全國數據庫研究了高血壓患者的流行病學。在2005年至2010年間,65歲及以上個體高血壓的患病率和發病率有明顯差異。在2005年和2010年,最高的共病率是血脂異常。在這兩年中,最常處方的降壓藥物為1或2種。在降壓藥物中,鈣通道阻滯劑是最廣泛處方的,其次是血管張力素轉化酵素抑制劑(angiotensin converting enzyme inhibitor,ACEI)及血管張力素接受器拮抗劑(angiotensinⅡ receptor blocker,ARB)。且三年的追蹤研究表明,2010年心血管疾病和死亡的風險低於2005年。另外,在2022年台灣心血管學會和台灣高血壓學會宣佈了新的高血壓治療準則。高血壓閾值向下調整為130/80mmHg,具有高心血管疾病風險的人應將收縮壓控制在120mmHg以下。第4.2節利用經濟模型模擬了台灣的高血壓患者接受強化血壓管理的情況。新的血壓治療目標的實施將導致終生醫療成本($31,589與$26,788相比)增加,但相對的品質調整生命年(12.54與 12.25相比)也增加。增量成本效益比則指出每獲得一個品質調整生命年需要花費$ 16,589(NT $497,670),具有99.1%和100%機率的獲得成本效益優勢。這項經濟評估能鼓勵在台灣環境下推廣強化血壓管理。此外,STEP試驗顯示,與傳統治療相比,老年高血壓患者接受強化血壓控制可顯著減少心血管不良事件。 第4.3章採用經濟學模型和多種情景分析,評估在不同情境下,即中國、美國 和英國在老年人強化血壓管理和標准血壓管理的成本效益。模型模擬了10,000名符合STEP試驗資格的患者,平均年齡為66歲,男性參出席者4,650人。每獲得一個品質調整生命年需要的花費分別為中國¥51,675($16,362),美國$25,417,英國£4,679($6,801)。結果表明,此血壓治療策略在中國有94.3% (一倍人均)和100% (三倍人均)的情況下是符合成本效益的。在美國則為86.9%和95.6% ( $50,000 /品質調整生命年和$100,000 /品質調整生命年)。英國在£20,000/品質調整生命年和£30,000/品質調整生命年時,符合成本效益概率分別為99.1%和100%。這項經濟評估表明,此血壓加強管理能減少心血管事件數,同時也顯示這些介入措施需要的成本低於公認的願意支付閾值。這研究也指出,在不同的臨床情境和不同國家中,對老年患者進行強化血壓管理的成本效益好處是一致的。
第5.1節,研究評估了患有後天免疫缺乏症候群的人(PLHIV)遵循抗逆轉錄病毒療法(ART)與心血管疾病之間的關聯。在這項研究中,分析了台灣2000年至2011年的國民健康保險研究資料庫,以評估18,071例在被診斷為後天免疫缺乏症候群前沒有心血管疾病的後天免疫缺乏症候群陽性患者的心血管疾病的影響。通過藥物使用率(MPR)來衡量抗逆轉錄病毒療法的遵循度。研究使用廣義估計分析來分析各種心血管疾病的成本影響。結果表明,心血管疾病的發病率從心因性休克的0.17/1000人年到缺血性心臟病的2.60/1000人年。沒有心血管疾病的基線病人的平均年醫療費用估計約為3,000美元。心血管疾病的成本影響是顯著的,腦血管疾病、心肌梗塞、心臟衰竭、心律失常和缺血性心臟病的發病率分別增加了41%、33%、30%、16%和14%的年醫療費用。在抗逆轉錄病毒療法遵循度(MPR≥0.8)高的病人,心血管疾病事件的成本影響顯著低於遵循ART (MPR<0.1)低的病人。 總之,後天免疫缺乏症病毒感染人群中發生的心血管疾病的經濟負擔是巨大的,並且抗逆轉錄病毒療法遵循度影響了醫藥花費。研究發現,更高的遵從度會減少心血管疾病的經濟影響。且根據第5.1節,後天免疫缺乏症候群人們的心血管疾病風險高於普通人群,因此在制定衛生保健計劃時,定期監測和早期檢測是至關重要的。第5.2和5.3節分別以橫斷面和縱向的世代研究方式來評估了斑點追蹤心臟超音波圖( STE)檢測其心肌損傷的可行性和影響心肌形變量的因素。在第5.2節中,對181名患有後天免疫缺乏症候群的人的功能進行了傳統和斑點追蹤心臟超音波圖評估。參與者分為兩組:那些有使用抗病毒藥物超過3個月以及未滿三個月的。使用回歸分析分析心肌應變與各種危險因素之間的關系。結果表明,左心室形變量在有用使用抗病毒藥物超過三個月經驗的組中較高,而高血壓和高病毒量與心肌形變量減少有關。不同的抗病毒藥物類別在這個研究並沒有被觀察到對形變量有顯著不同影響。該研究也可以看出,斑點追蹤心臟超音波在檢測後天免疫缺乏症候群早期心臟損傷方面非常有用,並強調及時使用抗病毒藥物,控制病毒量和管理高血壓在此類病人對保護心臟健康非常重要。在第5.3節中,該研究對在2年內對無心血管疾病症狀的後天免疫缺乏症候群患者進行了隨訪,收集了傳統心血管疾病危險因素和心臟超音波數據。使用基於群體的軌跡模型,研究分析了心肌形變量的變化,並進行了多項邏輯回歸,以識別不同患者群中的預測因素。總共有181名患者參加了研究並分為三種心肌應變軌跡。各組的基線左心室縱向形變量有顯著不同。與第1組(最佳形變量)相比,第2組(形變量逐漸應變差)與年齡≥ 40歲、抗病毒藥物使用持續時間≥12個月、左心室射出率<70%有關;第3組(最差形變量)則與吸煙、抗病毒藥物使用持續時間≥12 個月、左心室射出率<60%、非整合鏈轉移抑製劑組合的抗病毒藥物有關。這是第一個使用斑點追蹤心臟超音波圖監測後天免疫缺乏症候群患者臨床心肌功能障礙的縱向研究,並突顯了與心肌形變量變化相關的因素,提供了個體預防策略以及早期治療的可能。
近幾十年來,從以數量基礫向價值基礫的支付模式趨勢日益明顯。本博士研究論文評估了各種治療和預防策略在不同亞群中的有效性和成本效益。在患有心房顫動的患者中,非維生素K抗凝劑被證明是預防中風的經濟高效替代品。與醫學治療相比,心導管治療仍然是急性心肌梗死患者的經濟高效治療選擇。Ivabradine在治療心衰竭合併射出率減少患者,可以改善臨床效果。結果表明,在亞太國家,使用鈉葡萄糖轉運蛋白-2抑製劑是治療心衰竭合併射出率減少患者的經濟高效策略。後天免疫缺乏症候群患者的心血管疾病風險更高,更好的抗病毒藥物遵從率可減少經濟負擔。在後天免疫缺乏症候群患者的照護中,可以使用斑點追蹤心臟超音波監測沒症狀的心臟損傷,透過這個分析,從而制定個別差異化的預防或介入策略。以上這些發現不僅僅提供了重要的臨床發現個臨床工作者參考,也協助了醫療政策決策者在不同的次族群制定各種相異的治療或是預防策略。
This PhD thesis explores the effectiveness and financial feasibility of various treatments and prevention strategies for cardiovascular disease (CVD) in various subpopulations. The study evaluates the current state of CVD treatments and prevention measures, and also includes health technology assessment of new medications and interventions, as well as recommendations from current guidelines. The findings provide useful information for healthcare decision-makers and policymakers in the field of CVD, offering a deeper understanding of the impact of CVD on different subpopulations and the effectiveness of existing and new treatments and prevention methods.
In Chapter 2, the effectiveness and cost-effectiveness of different treatment and secondary prevention strategies in different subpopulation with atrial fibrillation (AF) or coronary artery diseases (CAD) were analysed. Non-vitamin K oral anticoagulants (NOAC) are commonly used in the prevention of stroke in patients with atrial fibrillation (SPAF). Chapter 2.1 constructed a Markov model based on the clinical randomized controlled trial (RCTs) to simulated Taiwanese AF patients using NOAC to prevent stroke, comparing to those using traditional oral anticoagulants, e.g., warfarin. Subsequently, the local medical cost and utility data from the national health insurance database were employed to evaluate the economic feasibility of NOAC in SPAF. Due to the lack of head-to-head comparison between the NOACs, this study performed a network meta-analysis to obtain the indirect efficacy comparison in advance. After 30-year simulation, the model projected that the incremental cost-effectiveness ratios (ICERs) of all NOACs are between $4,115 and $6,415 per quality-adjusted life year (QALY), much lower than the willingness-to-pay (WTP) thresholds, i.e., one-time Taiwanese national gross domestic product (GDP). Namely, all NOACs are cost-effective substitute therapy to warfarin in SPAF from Taiwanese national payer’s perspective. Besides, the probability of having the best cost-effectiveness was projected to be 27.4%, 27.1%, 23.6% and 21.9% for edoxaban 60 mg, rivaroxaban 20 and 15 mg, apixaban 5 mg and dabigatran 150 and 110 mg, respectively. Chapter 2.2 examined the cost-effectiveness of the existing procedure, i.e., percutaneous coronary intervention (PCI), in patients with myocardial infarction. This study constructed a longitudinal AMI cohort to estimate life expectancy (LE), loss-of-LE, life-years saved, and lifetime medical costs in PCI and medical therapy, based on the claim database of Taiwan’s National Health Insurance during 1999 and 2015. The ICER was $3,488 per life-year saved. Also, after adjusting age, the patients with acute myocardial infarction aged 50–59 years receiving PCI was shown to be cost-saving.
In Chapter 3, the studies focused on the patients with heart failure and reduced ejection fraction (HFrEF). Chapter 3.1 is a retrospective study examining the association between ivabradine and adverse events in patients with acute decompensation HFrEF between two multicentered cohorts. After 1:2 propensity score matching, a total of 876 patients were included in the final analysis. At the one-year follow-up, the patients who were part of the ivabradine group showed a significantly lower heart rate (77.6 ± 14.7 vs. 81.1 ± 16.3 bpm) and reduced symptoms of heart failure severity, compared to those in the non-ivabradine group. The use of ivabradine was also associated with a significantly lower risk of cardiovascular mortality (5.8 vs. 12.2 per 100-person year), all-cause mortality (7.2 vs. 14.0 per 100-person year), and total heart failure rehospitalization (42.3 vs. 72.6 per 100-person year) compared to non-ivabradine users. Chapters 3.2 and 3.3 examined the cost-effectiveness of sodium-glucose cotransporter-2 (SGLT2) Inhibitors (dapagliflozin and empagliflozin) adding to standard therapy in HFrEF patients. These two economic evaluation studies constructed the Markov model to estimate the lifetime medical costs and QALYs in add-on SGLT2 inhibitor and non-SGLT2 inhibitor therapy. Subsequently, the ICERs were used to assess the cost-effectiveness from the perspective of the national payer in different Asia-Pacific countries. Chapter 3.2 showed that in Korea, Australia, Taiwan, Japan, and Singapore, the ICER was $5,277, $9,980, $12,305, $16,705, and $23,227 per QALY gained respectively, when comparing add-on dapagliflozin to standard care alone. All simulations showed cost-effectiveness at a willingness-to-pay threshold of one gross domestic product per capita in the relevant Asia-Pacific country. In Chapter 3.3, the model projected that the ICER of add-on empagliflozin to standard therapy alone in HFrEF was $20,508, $24,046, $8,846, $53,791, $21,543, and $20,982 per QALY gained in Taiwan, Japan, South Korea, Singapore, Thailand, and Australia,, respectively. The addition of empagliflozin to HFrEF treatment is predicted to be a cost-effective option across the Asia-Pacific region. The cost-effectiveness is impacted by the WTP thresholds of the individual countries.
Chapter 4 focused on patients with hypertension. Chapter 4.1 used nationwide database to investigate the epidemiology of patients with hypertension. Between 2005 and 2010, there was a marked contrast in the trend of hypertension prevalence and incidence among individuals aged 65 and above. The highest rate of co-morbidity observed in both 2005 and 2010 was dyslipidemia. In both years, the most frequently prescribed categories of anti-hypertensive agents were 1 or 2. Among the anti-hypertensive agents, Calcium channel blockers emerged as the most widely prescribed, followed by angiotensin converting enzyme inhibitors/angiotensin receptor blockers. A three-year follow-up study in Taiwan revealed that in 2010, the risks of CVD and death were lower compared to 2005. In 2022, Taiwan Society of Cardiology and Taiwan Society of Hypertension announced the new recommendations of hypertension managements. The hypertension threshold became 130/80mmHg, and those with high CVD risks should control the systolic blood pressure below 120mmHg. Chapter 4.2 used the economic model to simulate the hypertensive Taiwanese receiving intensive blood-pressure managements. The implementation of a new blood-pressure treatment target resulted in increased lifetime medical costs ($31,589 compared to $26,788) and increased QALYs (12.54 compared to 12.25). The ICER was determined to be $16,589 (NT$497,670) per QALY gained, with a 99.1% and 100% probability of the treatment strategy being very cost-effective and cost-effective, respectively. This economic evaluation may encourage the promotion of intensive blood-pressure managements in Taiwan setting. Moreover, the STEP trial showed a significant reduction of cardiovascular adverse events for older hypertensive patients receiving intensive blood-pressure control, compared to those with traditional treatments. Chapter 4.3 employed the economic model and multiple scenario analyses to evaluate the cost-effectiveness of intensive versus standard blood-pressure managements in different setting, i.e., China, the U.S., and the U.K. A simulation of 10,000 patients eligible for STEP trial was performed, with a mean age of 66 years and 4,650 male participants. The ICER values per QALY gained were estimated to be ¥51,675 ($16,362) in China, $25,417 in the U.S., and£4,679 ($6,801) in the U.K. The results indicated that intensive management in China was cost-effective in 94.3% and 100% of cases when compared to the willing-to-pay thresholds of one-time and three-time GDP per capita. The probabilities of cost-effectiveness in the U.S. were 86.9% and 95.6% at $50,000/QALY and $100,000/QALY, respectively. Meanwhile, the U.K. had a cost-effectiveness probability of 99.1% and 100% at £20,000/QALY and £30,000/QALY, respectively. This economic evaluation showed that such intervention resulted in a reduction in the number of cardiovascular events, while also demonstrating acceptable costs per QALY gained. These costs were well below the commonly accepted willing-to-pay thresholds. The cost-effectiveness of intensive blood pressure management in older patients was found to be consistent across various clinical scenarios and different countries.
In Chapter 5.1, the study assessed the association between CVD and adherence to antiretroviral therapy (ART) among people living with HIV (PLHIV). In this study, the National Health Insurance Research Database of Taiwan from the years 2000 to 2011 was analyzed to evaluate the impact of CVDs in 18,071 HIV-positive patients who were free of CVDs prior to their diagnosis with HIV. The level of ART adherence was measured through the use of the medication possession ratio (MPR). A generalized estimating equations analysis was performed to estimate the cost impact of various CVDs. The results indicated that the incidence of CVDs ranged from 0.17/1000 person-years for cardiogenic shock to 2.60/1000 person-years for ischemic heart diseases. The average annual medical cost for a base-case patient without CVDs was estimated to be $3000. The cost impact of CVDs was significant, with the incidence of cerebrovascular diseases, myocardial infarction, heart failure, arrhythmia, and ischemic heart diseases increasing annual costs by 41%, 33%, 30%, 16%, and 14%, respectively. The cost impact of incident CVDs in years with high adherence to ART (MPR ≥ 0.8) was found to be significantly lower compared to years with low adherence (MPR < 0.1). Conclusively, the economic burden of incident CVDs in the HIV-infected population was substantial and varied based on the extent of ART use. The study found that a greater adherence to ART led to a reduced economic impact of CVDs. Based on Chapter 5.1, PLHIV’s CVD risks are higher than general population and regular monitor and early detection becomes crucial when making the healthcare plans. Chapters 5.2 and 5.3 cross-sectionally and longitudinally evaluated the feasibility of speckle-tracking echocardiogragm (STE) in detecting subclinical myocardial damage and the factors influencing the myoicardial stain among PLHIV. In Chapter 5.2, 181 people living with HIV (PLHIV) were evaluated for heart function using conventional and strain echocardiogram methods. The participants were divided into two groups: those who were experienced with ART and those who were not. Regression analysis was used to analyze the relationship between myocardial strain and various risk factors. The results showed that left ventricular strain was higher in the ART-experienced group, while hypertension and high viral loads were associated with reduced myocardial strain. ART classes were not found to impact strain changes. The study concluded that STE is useful in detecting early heart impairment in PLHIV, and emphasized the importance of timely ART, virus control, and hypertension management in preserving heart health. In Chapter 5.3, this study followed up asymptomatic PLHIV without CVDs for 2 years, collecting data on traditional CVD risk factors and echocardiographic parameters. Using a group-based trajectory model, the study analyzed myocardial strain changes and performed multinomial logistic regression to identify predictors in different patient groups. A total of 181 patients were recruited and categorized into three myocardial strain trajectories. The baseline LVGLS of the groups differed significantly. Comparing to the Group 1 (the best strain), the gradual strain decline (Group 2) was associated with age ≥ 40, ART duration ≥ 12 months, and LVEF < 70%, and the worst strain (Group 3) was linked to smoking, ART duration ≥ 12 months, LVEF < 60%, and ART regimens with non-integrase strand transfer inhibitors. This is the first longitudinal study to use STE to monitor subclinical myocardial dysfunction in PLHIV, and highlights key factors associated with myocardial strain changes, enabling individualized preventative strategies and early interventions.
In conclusion, there has been a growing trend in recent decades towards a shift in the payment model from quantity-based to value-based. This PhD thesis evaluates the effectiveness and cost-effectiveness of various treatment and prevention strategies in different subpopulations. NOACs were found to be a cost-effective alternative to warfarin in patients with SPAF. PCI remained a cost-effective treatment option for patients with acute myocardial infarction when compared to medical therapy. Ivabradine was associated with improved clinical outcomes for patients with HFrEF. The use of add-on SGLT2 inhibitors was determined to be a cost-effective strategy for treating HFrEF across Asia-Pacific countries. PLHIV have a higher risk of CVD, and better adherence to ART leads to a lower economic burden. STE can be utilized to monitor subclinical heart injury in the management of PLHIV, allowing for the development of individualized prevention or intervention strategies. These findings provide important clinical and economic outcomes that can be used by healthcare providers and policymakers in various situations and subpopulations.
Chapter 1 Introduction
1. Tabassum R, Ripatti S. Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases. Cell Mol Life Sci. 2021 Mar;78(6):2565-2584.
2. World Health Organization. Cardiovascular Diseases. Access on February 18, 2023. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
3. Ministry of Health and Welfare. Cause of Death Statistics. Access on February 18, 2023. https://www.mohw.gov.tw/cp-5256-63399-2.html
4. Chiang CE, Lin SY, Lin TH, Wang TD, Yeh HI, Chen JF, Tsai CT, Hung YJ, Li YH, Liu PY, Chang KC, Wang KL, Chao TH, Shyu KG, Yang WS, Ueng KC, Chu PH, Yin WH, Wu YW, Cheng HM, Shin SJ, Huang CN, Chuang LM, Lin SJ, Yeh SJ, Sheu WH, Lin JL. 2018 consensus of the Taiwan Society of Cardiology and the Diabetes Association of Republic of China (Taiwan) on the pharmacological management of patients with type 2 diabetes and cardiovascular diseases. J Chin Med Assoc. 2018 Mar;81(3):189-222.
5. Wang TD, Chiang CE, Chao TH, Cheng HM, Wu YW, Wu YJ, Lin YH, Chen MY, Ueng KC, Chang WT, Lee YH, Wang YC, Chu PH, Chao TF, Kao HL, Hou CJ, Lin TH. 2022 Guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the Management of Hypertension. Acta Cardiol Sin. 2022 May;38(3):225-325.
6. Choi SE, Sagris D, Hill A, Lip GYH, Abdul-Rahim AH. Atrial fibrillation and stroke. Expert Rev Cardiovasc Ther. 2023 Jan;21(1):35-56.
7. Norris JW, Froggatt GM, Hachinski VC. Cardiac arrhythmias in acute stroke. Stroke. 1978 Jul-Aug;9(4):392-6.
8. Kamel H, Okin PM, Elkind MS, Iadecola C. Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model. Stroke. 2016 Mar;47(3):895-900.
9. Bai Y, Wang YL, Shantsila A, Lip GYH. The Global Burden of Atrial Fibrillation and Stroke: A Systematic Review of the Clinical Epidemiology of Atrial Fibrillation in Asia. Chest. 2017 Oct;152(4):810-820.
10. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med. 1994 Jul 11;154(13):1449-57. Erratum in: Arch Intern Med 1994 Oct 10;154(19):2254.
11. Lip GY, Halperin JL. Improving stroke risk stratification in atrial fibrillation. Am J Med. 2010 Jun;123(6):484-8.
12. Graves KG, May HT, Knowlton KU, Muhlestein JB, Jacobs V, Lappé DL, Anderson JL, Horne BD, Bunch TJ. Improving CHA2DS2-VASc stratification of non-fatal stroke and mortality risk using the Intermountain Mortality Risk Score among patients with atrial fibrillation. Open Heart. 2018 Nov 17;5(2):e000907.
13. Capodanno D, Capranzano P, Giacchi G, Calvi V, Tamburino C. Novel oral anticoagulants versus warfarin in non-valvular atrial fibrillation: a meta-analysis of 50,578 patients. Int J Cardiol. 2013 Aug 20;167(4):1237-41.
14. Reddy VY, Doshi SK, Kar S, Gibson DN, Price MJ, Huber K, Horton RP, Buchbinder M, Neuzil P, Gordon NT, Holmes DR Jr; PREVAIL and PROTECT AF Investigators. 5-Year Outcomes After Left Atrial Appendage Closure: From the PREVAIL and PROTECT AF Trials. J Am Coll Cardiol. 2017 Dec 19;70(24):2964-2975.
15. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–1151.
16. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–891
17. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–992.
18. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus war-farin in patients with atrial fibrillation. N Engl J Med. 2013;369:2093–2104.
19. Goldhaber SZ, Schulman S, Eriksson H, Feuring M, Fraessdorf M, Kreuzer J, Schüler E, Schellong S, Kakkar A. Dabigatran versus Warfarin for Acute Venous Thromboembolism in Elderly or Impaired Renal Function Patients: Pooled Analysis of RE-COVER and RE-COVER II. Thromb Haemost. 2017 Nov;117(11):2045-2052.
20. Goette A, Merino JL, Ezekowitz MD, Zamoryakhin D, Melino M, Jin J, Mercuri MF, Grosso MA, Fernandez V, Al-Saady N, Pelekh N, Merkely B, Zenin S, Kushnir M, Spinar J, Batushkin V, de Groot JR, Lip GY; ENSURE-AF investigators. Edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation (ENSURE-AF): a randomised, open-label, phase 3b trial. Lancet. 2016 Oct 22;388(10055):1995-2003.
21. Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, Bittl JA, Cohen MG, DiMaio JM, Don CW, Fremes SE, Gaudino MF, Goldberger ZD, Grant MC, Jaswal JB, Kurlansky PA, Mehran R, Metkus TS Jr, Nnacheta LC, Rao SV, Sellke FW, Sharma G, Yong CM, Zwischenberger BA. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 Jan 18;145(3):e4-e17.
22. Vlietstra RE, Holmes DR Jr. Percutaneous transluminal coronary angioplasty. J Card Surg. 1988 Mar;3(1):53-66.
23. He W, Cao M, Li Z. Effects of different doses of atorvastatin, rosuvastatin, and simvastatin on elderly patients with ST-elevation acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI). Drug Dev Res. 2020 Aug;81(5):551-556.
24. Mancini GBJ, Hartigan PM, Shaw LJ, Berman DS, Hayes SW, Bates ER, Maron DJ, Teo K, Sedlis SP, Chaitman BR, Weintraub WS, Spertus JA, Kostuk WJ, Dada M, Booth DC, Boden WE. Predicting outcome in the COURAGE trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation): coronary anatomy versus ischemia. JACC Cardiovasc Interv. 2014 Feb;7(2):195-201.
25. Wald DS, Morris JK, Wald NJ, Chase AJ, Edwards RJ, Hughes LO, Berry C, Oldroyd KG; PRAMI Investigators. Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med. 2013 Sep 19;369(12):1115-23.
26. Emmons-Bell S, Johnson C, Roth G. Prevalence, incidence and survival of heart failure: a systematic review. Heart. 2022 Aug 11;108(17):1351-1360.
27. Crespo-Leiro MG, Metra M, Lund LH, Milicic D, Costanzo MR, Filippatos G, Gustafsson F, Tsui S, Barge-Caballero E, De Jonge N, Frigerio M, Hamdan R, Hasin T, Hülsmann M, Nalbantgil S, Potena L, Bauersachs J, Gkouziouta A, Ruhparwar A, Ristic AD, Straburzynska-Migaj E, McDonagh T, Seferovic P, Ruschitzka F. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018 Nov;20(11):1505-1535.
28. Behnoush AH, Khalaji A, Naderi N, Ashraf H, von Haehling S. ACC/AHA/HFSA 2022 and ESC 2021 guidelines on heart failure comparison. ESC Heart Fail. 2022 Dec 2.
29. Nauman D, Greenberg B. Studies of Left Ventricular Dysfunction (SOLVD). Am J Geriatr Cardiol. 1993 Jan;2(1):28-36
30. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ Jr, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992 Sep 3;327(10):669-77.
31. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999 Jun 12;353(9169):2001-7.
32. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999 Sep 2;341(10):709-17.
33. Das D, Savarese G, Dahlström U, Fu M, Howlett J, Ezekowitz JA, Lund LH. Ivabradine in Heart Failure: The Representativeness of SHIFT (Systolic Heart Failure Treatment With the IF Inhibitor Ivabradine Trial) in a Broad Population of Patients With Chronic Heart Failure. Circ Heart Fail. 2017 Sep;10(9):e004112.
34. Psotka MA, Teerlink JR. Ivabradine: Role in the Chronic Heart Failure Armamentarium. Circulation. 2016 May 24;133(21):2066-75.
35. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L; SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010 Sep 11;376(9744):875-85.
36. Guha K, Allen CJ, Hartley A, Sharma R. Ivabradine: A Current Overview. Curr Clin Pharmacol. 2016;11(4):241-249.
37. Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021 Feb 26;107(13):1032–8.
38. Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol. 2023 Jan 6.
39. Aroor AR, Das NA, Carpenter AJ, Habibi J, Jia G, Ramirez-Perez FI, Martinez-Lemus L, Manrique-Acevedo CM, Hayden MR, Duta C, Nistala R, Mayoux E, Padilla J, Chandrasekar B, DeMarco VG. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol. 2018 Jul 30;17(1):108.
40. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017 Aug 17;377(7):644-657.
41. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F; EMPEROR-Reduced Trial Investigators. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020 Oct 8;383(15):1413-1424.
42. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O'Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM; DAPA-HF Trial Committees and Investigators. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019 Nov 21;381(21):1995-2008.
43. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS; DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019 Jan 24;380(4):347-357.
44. World Health Organization. Hypertension. Access on February 18, 2023. https://www.who.int/news-room/fact-sheets/detail/hypertension#:~:text=The%20World%20Health%20Organization%20%28WHO%29%20is%20supporting%20countries,on%20the%20pharmacological%20treatment%20of%20hypertension%20in%20adults.
45. Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016;387:957-967.
46. The SPRINT Research Group. Final report of a trial of intensive versus standard blood-pressure control. N Engl J Med 2021;384:1921-1930.
47. Zhang W, Zhang S, Deng Y, Wu S, Ren J, Sun G, Yang J, Jiang Y, Xu X, Wang TD, Chen Y, Li Y, Yao L, Li D, Wang L, Shen X, Yin X, Liu W, Zhou X, Zhu B, Guo Z, Liu H, Chen X, Feng Y, Tian G, Gao X, Kario K, Cai J; STEP Study Group. Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension. N Engl J Med. 2021 Sep 30;385(14):1268-1279.
48. UNAIDS. USAIDS data 2022 epidemiological estimates Global HIV statistics. 2023. Access on Feburary 2023. https://www.unaids.org/en/resources/documents/2023/2022_unaids_data
49. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clinical infectious diseases. 2011;53(11):1120-6.
50. Choi JY, Lui GCY, Liao CT, Yang CJ. Managing cardiovascular risk in people living with HIV in Asia - where are we now? HIV Med. 2022 Feb;23(2):111-120.
51. Ridha E, Devitt E, Boffito M, Boag F. Antiretroviral therapy and cardiovascular risk. Case Reports. 2011;2011:bcr1020103429.
52. Eric N, Janet L, Steven KG. Inflammation, immune activation, and cardiovascular disease in HIV. AIDS (London, England). 2016;30(10):1495.
53. Group DADS. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D: A: D study: a multi-cohort collaboration. The Lancet. 2008;371(9622):1417-26.
54. Elion RA, Althoff KN, Zhang J, Moore RD, Gange SJ, Kitahata MM, et al. Recent abacavir use increases risk for Types 1 and 2 myocardial infarctions among adults with HIV. Journal of acquired immune deficiency syndromes (1999). 2018;78(1):62.
55. Boettiger D, Law M, Ross J, Huy B, Heng B, Ditangco R, et al. Atherosclerotic cardiovascular disease screening and management protocols among adult HIV clinics in Asia. Journal of virus eradication. 2020;6(1):11-8.
56. Lai Y-J, Chen Y-Y, Huang H-H, Ko M-C, Chen C-C, Yen Y-F. Incidence of cardiovascular diseases in a nationwide HIV/AIDS patient cohort in Taiwan from 2000 to 2014. Epidemiology & Infection. 2018;146(16):2066-71.
57. Phillips AN, Carr A, Neuhaus J, Visnegarwala F, Prineas R, Burman WJ, et al. Interruption of antiretroviral therapy and risk of cardiovascular disease in persons with HIV-1 infection: exploratory analyses from the SMART trial. Antiviral therapy. 2008;13(2):177.
58. Shah AS, Stelzle D, Lee KK, Beck EJ, Alam S, Clifford S, et al. Global burden of atherosclerotic cardiovascular disease in people living with HIV: systematic review and meta-analysis. Circulation. 2018;138(11):1100-12.
59. Ohira T, Iso H. Cardiovascular Disease Epidemiology in Asia–An Overview–. Circulation Journal. 2013:CJ-13-0702.
60. Bijker R, Kumarasamy N, Kiertiburanakul S, Pujari S, Lam W, Chaiwarith R, et al. Cardiovascular disease incidence projections in the TREAT Asia HIV Observational Database (TAHOD). Antiviral therapy. 2019;24(4):271.
61. Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. New England Journal of Medicine. 2005;352(1):48-62.
62. Wohl DA, Brown TT. Management of morphologic changes associated with antiretroviral use in HIV-infected patients. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2008;49:S93-S100.
63. Han SH, Zhou J, Saghayam S, Vanar S, Phanuphak N, Chen Y-MA, et al. Prevalence of and risk factors for lipodystrophy among HIV-infected patients receiving combined antiretroviral treatment in the Asia-Pacific region: results from the TREAT Asia HIV Observational Database (TAHOD). Endocrine journal. 2011;58(6):475-84.
64. Friis-Møller N, Reiss P, Sabin CA, Weber R, Monforte A, El-Sadr W, et al. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356(17):1723-35.
65. Control CfD. HIV/AIDS case report. 2021.
66. Butt AA, Chang C-C, Kuller L, Goetz MB, Leaf D, Rimland D, et al. Risk of heart failure with human immunodeficiency virus in the absence of prior diagnosis of coronary heart disease. Archives of internal medicine. 2011;171(8):737-43.
67. Wu P-Y, Chen M-Y, Hsieh S-M, Sun H-Y, Tsai M-S, Lee K-Y, et al. Comorbidities among the HIV-infected patients aged 40 years or older in Taiwan. PloS one. 2014;9(8):e104945.
68. Shahbaz S, Manicardi M, Guaraldi G, Raggi P. Cardiovascular disease in human immunodeficiency virus infected patients: A true or perceived risk? World journal of cardiology. 2015;7(10):633.
69. Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. Aids. 1998;12(7):F51-F8.
70. Schexnayder J, Longenecker CT, Muiruri C, Bosworth HB, Gebhardt D, Gonzales SE, et al. Understanding constraints on integrated care for people with HIV and multimorbid cardiovascular conditions: an application of the Theoretical Domains Framework. Implementation science communications. 2021;2(1):1-13.
71. Lattanzi S, Brigo F, Silvestrini M. Integrated care of hypertension and HIV infection. The Journal of Clinical Hypertension. 2018;20(10):1493-5.
72. Haldane V, Legido-Quigley H, Chuah FLH, Sigfrid L, Murphy G, Ong SE, et al. Integrating cardiovascular diseases, hypertension, and diabetes with HIV services: a systematic review. AIDS care. 2018;30(1):103-15.
73. Ojo T, Lester L, Iwelunmor J, Gyamfi J, Obiezu-Umeh C, Onakomaiya D, et al. Feasibility of integrated, multilevel care for cardiovascular diseases (CVD) and HIV in low-and middle-income countries (LMICs): A scoping review. PloS one. 2019;14(2):e0212296.
74. Duffy M, Ojikutu B, Andrian S, Sohng E, Minior T, Hirschhorn LR. Non‐communicable diseases and HIV care and treatment: models of integrated service delivery. Tropical Medicine & International Health. 2017;22(8):926-37.
75. Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zacà V, et al. Speckle‐tracking echocardiography: a new technique for assessing myocardial function. Journal of Ultrasound in Medicine. 2011;30(1):71-83.
76. Mondillo S, Cameli M, Caputo ML, Lisi M, Palmerini E, Padeletti M, et al. Early detection of left atrial strain abnormalities by speckle-tracking in hypertensive and diabetic patients with normal left atrial size. Journal of the American Society of Echocardiography. 2011;24(8):898-908.
77. Rodrigues RC, Azevedo KMLd, Moscavitch SD, Setubal S, Mesquita CT. The use of two-dimensional strain measured by speckle tracking in the identification of incipient ventricular dysfunction in HIV-infected patients on antiretroviral therapy, untreated HIV patients and healthy controls. Arquivos brasileiros de cardiologia. 2019;113:737-45.
78. Capotosto L, D’Ettorre G, Ajassa C, Cavallari N, Ciardi MR, Placanica G, et al. Assessment of biventricular function by three-dimensional speckle tracking echocardiography in adolescents and young adults with human immunodeficiency virus infection: a pilot study. Cardiology. 2019;144(3-4):101-11.
79. Cincin A, Ozben B, Tukenmez Tigen E, Sunbul M, Sayar N, Gurel E, et al. Ventricular and atrial functions assessed by speckle‐tracking echocardiography in patients with human immunodeficiency virus. Journal of Clinical Ultrasound. 2021;49(4):341-50.
80. Mendes L, Silva D, Miranda C, Sá J, Duque L, Duarte N, et al. Impact of HIV infection on cardiac deformation. Revista Portuguesa de Cardiologia (English Edition). 2014;33(9):501-9.
81. Sims A, Frank L, Cross R, Clauss S, Dimock D, Purdy J, et al. Abnormal cardiac strain in children and young adults with HIV acquired in early life. Journal of the American Society of Echocardiography. 2012;25(7):741-8.
82. Carson SS. Outcomes research: methods and implications. Semin Respir Crit Care Med. 2010 Feb;31(1):3-12.
83. Jefford M, Stockler MR, Tattersall MH. Outcomes research: what is it and why does it matter? Intern Med J. 2003 Mar;33(3):110-8.
84. McIlvennan CK, Morris MA, Guetterman TC, Matlock DD, Curry L. Qualitative Methodology in Cardiovascular Outcomes Research: A Contemporary Look. Circ Cardiovasc Qual Outcomes. 2019 Sep;12(9):e005828.
Chapter 2.1 Cost-Effectiveness Analysis of Oral Anticoagulants in Stroke Prevention among Patients with Atrial Fibrillation in Taiwan
1. Lin HJ,Wolf PA, Kelly-HayesM, et al. Stroke severity in atrial fibrillation. The Framingham Study. Stroke 1996;27:1760-4.
2. World Health Organization. Global burden of stroke. In: Mackay J, Mensah G, Eds. The Atlas of Heart Disease and Stroke. Geneva, Switzerland:World Health Organization, 2004:50-1.
3. Gustavsson A, Svensson M, Jacobi F, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 2011;21:718- 79.
4. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 2012;125:e2-220.
5. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991;1991:983-8.
6. Brüggenjürgen B, Rossnagel K, Roll S, et al. The impact of atrial fibrillation on the cost of stroke: the Berlin acute stroke study. Value Health 2007;10:137-43.
7. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 2007;146:857-67.
8. Lin PJ. Reviewing the reality: why we need to change. Eur Heart J 2005;Suppl 2005(7 Suppl E):E15-20.
9. Ansell J, Hollowell J, Pengo V, et al. Descriptive analysis of the process and quality of oral anticoagulation management in reallife practice in patients with chronic non-valvular atrial fibrillation: the international study of anticoagulation management (ISAM). J Thromb Thrombolysis 2007;23:83-91.
10. Witt DM, Delate T, Clark NP, et al. Twelve-month outcomes and predictors of very stable INR control in prevalentwarfarin users. J Thromb Haemost 2010;8:744-9.
11. PatelMR,Mahaffey KW, Garg J, et al. Rivaroxaban versuswarfarin in nonvalvular atrial fibrillation. N Engl JMed 2011;365:883-91.
12. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009; 361:1139-51.
13. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011; 365:981-92.
14. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013; 369:2093-104.
15. Coyle D, Coyle K, Cameron C, et al. Cost-effectiveness of new oral anticoagulants compared with warfarin in preventing stroke and other cardiovascular events in patients with atrial fibrillation. Value Health 2013;16:498-506.
16. Harrington AR, Armstrong EP, Nolan PE Jr, Malone DC. Cost-effectiveness of apixaban, dabigatran, rivaroxaban, and warfarin for stroke prevention in atrial fibrillation. Stroke 2013;44:1676-81.
17. Krejczy M, Harenberg J, Marx S, et al. Comparison of cost-effectiveness of anticoagulation with dabigatran, rivaroxaban and apixaban in patients with non-valvular atrial fibrillation across countries. J Thromb Thrombolysis 2014;37:507-23.
18. Rognoni C, Marchetti M, Quaglini S, Liberato NL. Apixaban, dabigatran, and rivaroxaban versus warfarin for stroke prevention in non-valvular atrial fibrillation: a cost-effectiveness analysis. Clin Drug Investig 2014;34:9-17.
19. Chien KL, Su TC, Hsu HC, et al. Atrial fibrillation prevalence, incidence and risk of stroke and all-cause death among Chinese. Int J Cardiol 2010;139:173-80.
20. Yu HC, Tsai YF, Chen MC, Yeh CH. Underuse of antithrombotic therapy caused high incidence of ischemic stroke in patients with atrial fibrillation. Int J Stroke 2012;7:112-7.
21. Lin LJ, Cheng MH, Lee CH, et al. Compliance with antithrombotic prescribing guidelines for patients with atrial fibrillation--a nationwide descriptive study in Taiwan. Clin Ther 2008;30:1726-36.
22. Yang YN, Yin WH, Feng AN, et al. Low-intensity warfarin therapy for the prevention of stroke in patients with high-risk nonvalvular atrial fibrillation. Acta Cardiol Sin 2011;27:158-65.
23. Janzic A, Kos M. Cost-effectiveness of novel oral anticoagulants for stroke prevention in atrial fibrillation depending on the quality of warfarin anticoagulation control. Pharmacoeconomics 2015;33:395-408.
24. Shah A, Shewale A, Hayes CJ, Martin BC. Cost Effectiveness of oral anticoagulants for ischemic stroke prophylaxis among nonvalvular atrial fibrillation patients. Stroke 2016;47:1555-61.
25. Chang CH, Yang YH, Chen JH, Lin LJ. Cost-effectiveness of dabigatran etexilate for the prevention of stroke and systemic embolism in atrial fibrillation in Taiwan. Thromb Res 2014;133:782-9.
26. Hori M, Fukaya T, Kleine E, et al. Efficacy and safety of dabigatran etexilate vs. warfarin in Asian RE-LY patients according to baseline renal function or CHADS2 score. Circ J 2015; 79:2138-47.
27. Wong KSL, Hu DY, Oomman A, et al. Rivaroxaban for stroke prevention in East Asian patients fromthe ROCKET AF trial. Stroke 2014;45:1739-47.
28. Hori M, MatsumotoM, Tanahashi N, et al. Rivaroxaban vs. warfarin in Japanese patients with atrial fibrillation. Circ J 2012;76: 2104-11.
29. Mao L, Li C, Li T, Yuan K. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in Chinese patients with atrial fibrillation. Vascular 2014;22:252-8.
30. Goto S, Zhu J, Liu L, et al. Efficacy and safety of apixaban compared with warfarin for stroke prevention in patients with atrial fibrillation from East Asia: a subanalysis of the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) Trial. Am Heart J 2014;168:303-9.
31. Yamashita T, Koretsune Y, Yang Y, et al. Edoxaban vs. Warfarin in East Asian patients with atrial fibrillation–an ENGAGE AF-TIMI 48 subanalysis–. Circ J 2016;80:860-9.
32. Sullivan PW, Ghushchyan V. Preference-based EQ-5D index scores for chronic conditions in the United States. Med Decis Making 2006;26:410-20.
33. Sullivan PW, Lawrence WF, Ghushchyan V. A national catalog of preference-based scores for chronic conditions in the United States. Med Care 2005;43:736-49.
34. Gage BF, Cardinalli AB, Owens DK. The effect of stroke and stroke prophylaxis with aspirin or warfarin on quality of life. Arch Intern Med 1996;156:1829-36.
35. Earnshaw SR, Scheiman J, Fendrick AM, et al. Cost-utility of aspirin and proton pump inhibitors for primary prevention. Arch Intern Med 2011;171:218-25.
36. Briggs AH. Handling uncertainty in cost-effectiveness models. Pharmacoeconomics 2000;17:479-500.
37. Liu CY, Chen HC. Cost-effectiveness analysis of apixaban, dabigatran, rivaroxaban, and warfarin for stroke prevention in atrial fibrillation in Taiwan. Clin Drug Investig 2017;37:285-93.
38. Vilain KA, Yang MC, Tan ECH, et al. Cost-effectiveness of edoxaban vs. warfarin in patients with atrial fibrillation based on results of the ENGAGE AF-TIMI 48 trial: Taiwanese perspective. Value in Health Regional Issues 2017;12:74-83.
39. Lip GY,Wang KL, Chiang CE. Non-vitamin K antagonist oral anticoagulants (NOACs) for stroke prevention in Asian patients with atrial fibrillation: time for a reappraisal. Int J Cardiol 2015;180: 246-54.
40. Wang KL, Lip GY, Lin SJ, Chiang CE. Non–vitamin K antagonist oral anticoagulants for stroke prevention in Asian patients with nonvalvular atrial fibrillation:meta-analysis. Stroke 2015;46:2555-61.
41. Meng SW, Lin TT, Liao MT, et al. Direct comparison of low-dose dabigatran and rivaroxaban for effectiveness and safety in patients with non-valvular atrial fibrillation. Acta Cardiol Sin 2019; 35:42-54.
42. Chan YH, See LC, Tu HT, et al. Efficacy and safety of apixaban, dabigatran, rivaroxaban, and warfarin in Asians with nonvalvular atrial fibrillation. J Am Heart Assoc 2018:7;e008150.
Chapter 2.2 Cost-effectiveness of percutaneous coronary intervention versus medical therapy in patients with acute myocardial infarction: real-world and lifetime-horizon data from Taiwan
1. Finegold JA, Asaria P, Francis DP. Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardio. 2013;168(2):934-945.
2. Bassand J-P, Danchin N, Filippatos G, et al. Implementation of reperfusion therapy in acute myocardial infarction. A policy statement from the European Society of Cardiology. Eur Heart J. 2005;26(24):2733-2741.
3. Li Y-H, Yeh H-I, Tsai C-T, et al. 2012 guidelines of the Taiwan Society of Cardiology (TSOC) for the management of ST-segment elevation myocardial infarction. Acta Cardiol Sin. 2012;28(1):63-89.
4. Members ATF, Steg PG, James SK, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). Eur Heart J. 2012;33(20):2569-2619.
5. Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J Am Coll Cardiol. 2016;67(10):1235-1250.
6. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003;361(9351):13-20.
7. Li YH, Wang YC, Wang YC, et al. 2018 Guidelines of the Taiwan Society of Cardiology, Taiwan Society of Emergency Medicine and Taiwan Society of Cardiovascular Interventions for the management of non ST-segment elevation acute coronary syndrome. J Formos Med Assoc. 2018;117(9):766-790.
8. Navarese EP, Gurbel PA, Andreotti F, et al. optimal timing of coronary invasive strategy in non–st-segment elevation acute coronary syndromes: a systematic review and meta-analysis. Ann Intern Med. 2013;158(4):261-270.
9. Mehta SR, Granger CB, Boden WE, et al. Early versus delayed invasive intervention in acute coronary syndromes. N Engl J Med. 2009;360(21):2165-2175.
10. Gray HH, Henderson RA, de Belder MA, Underwood SR, Camm AJ, Guideline Development Group. Early management of unstable angina and non-ST-segment elevation myocardial infarction: summary of NICE guidance. Heart. 2010;96(20):1662-1668.
11. Degano IR, Salomaa V, Veronesi G, et al. Twenty-five-year trends in myocardial infarction attack and mortality rates, and case-fatality, in six European populations. Heart. 2015;101(17):1413-1421.
12. Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362(23):2155-2165.
13. Freisinger E, Fuerstenberg T, Malyar NM, et al. German nationwide data on current trends and management of acute myocardial infarction: discrepancies between trials and real-life. Eur Heart J. 2014;35(15):979-988.
14. Lee C-H, Fang C-C, Tsai L-M, Gan S-T, Lin S-H, Li Y-H. Patterns of acute myocardial infarction in Taiwan from 2009 to 2015. J Am Coll Cardiol. 2018;122(12):1996-2004.
15. Bagai A, Cantor WJ, Tan M, et al. Clinical outcomes and cost implications of routine early PCI after fibrinolysis: one-year follow-up of the Trial of Routine Angioplasty and Stenting after Fibrinolysis to Enhance Reperfusion in Acute Myocardial Infarction (TRANSFER-AMI) study. Am Heart J. 2013;165(4):630-637. E632.
16. McCollam P, Etemad L. Cost of care for new-onset acute coronary syndrome patients who undergo coronary revascularization. J Invasive Cardiol. 2005;17(6):307-311.
17. Soekhlal R, Burgers L, Redekop W, Tan SS. Treatment costs of acute myocardial infarction in the Netherlands. Neth Heart J. 2013;21(5):230-235.
18. Wu T-Y, Majeed A, Kuo KN. An overview of the healthcare system in Taiwan. London J Prim Care. 2010;3(2):115-119.
19. Hsing AW, Ioannidis JP. Nationwide population science: lessons from the Taiwan national health insurance research database. JAMA Intern Med. 2015;175(9):1527-1529.
20. Hsieh T-H, Wang J-D, Tsai L-M. Improving in-hospital mortality in elderly patients after acute coronary syndrome—a nationwide analysis of 97,220 patients in Taiwan during 2004–2008. Int J Cardiol. 2012;155(1):149-154.
21. Hwang JS, Hu TH, Lee LJH, Wang JD. Estimating lifetime medical costs from censored claims data. Health Econ. 2017;26(12):e332-e344.
22. Fang CT, Chang YY, Hsu HM, et al. Life expectancy of patients with newly-diagnosed HIV infection in the era of highly active antiretroviral therapy. QJM. 2007;100(2):97-105.
23. Basu A, Manning WG. Estimating lifetime or episode‐of‐illness costs under censoring. Health Econ. 2010;19(9):1010-1028.
24. Taiwan Society for Pharmacoeconomic Outcomes Research. Guidelines of methodological standards for pharmacoeconomic evaluations. 2006. https://tools.ispor.org/PEguidelines/source/2006_PEG_EN_2009.pdf (28 February 2020)
25. Selmer R, Halvorsen S, Myhre KI, Wisløff TF, Kristiansen IS. Cost-effectiveness of primary percutaneous coronary intervention versus thrombolytic therapy for acute myocardial infarction. Scand Cardiovasc J. 2005;39(5):276-285.
26. Directorate-General of Budget AaS. Executive Yuan. In: ROC (Taiwan); 2019.
27. Bertram MY, Lauer JA, De Joncheere K, et al. Cost–effectiveness thresholds: pros and cons. Bulletin of the World Health Organization. 2016;94(12):925.
28. Marseille E, Larson B, Kazi DS, Kahn JG, Rosen S. Thresholds for the cost–effectiveness of interventions: alternative approaches. Bull World Health Organ. 2014;93:118-124.
29. Kähkönen O, Kankkunen P, Saaranen T, et al. Motivation is a crucial factor for adherence to a healthy lifestyle among people with coronary heart disease after percutaneous coronary intervention. J Adv Nurs. 2015 Oct;71(10):2364-73.
30. Chen L, Han L, Luo J. Selection of percutaneous coronary intervention in elderly patients with acute myocardial infarction in tertiary hospital. Medicine. 2019;98(29).
31. Dzau VJ, McClellan MB, McGinnis JM, et al. Vital directions for health and health care: priorities from a National Academy of Medicine initiative. JAMA. 2017;317(14):1461-1470.
32. Porter ME, Lee TH. From volume to value in health care: the work begins. JAMA. 2016;316(10):1047-1048.
33. Rinfret S, Grines CL, Cosgrove RS, et al. Quality of life after balloon angioplasty or stenting for acute myocardial infarction: one-year results from the Stent-PAMI trial. J Am Coll Cardiol. 2001;38(6):1614-1621.
34. Mortensen OS, Madsen JK, Haghfelt T, et al. Health related quality of life after conservative or invasive treatment of inducible postinfarction ischaemia. Heart. 2000;84(5):535-540.
35. Kim J, Henderson RA, Pocock SJ, et al. Health-related quality of life after interventional or conservative strategy in patients with unstable angina or non–ST-segment elevation myocardial infarction: one-year results of the third Randomized Intervention Trial of unstable Angina (RITA-3). J Am Coll Cardiol. 2005;45(2):221-228.
Chapter 3.1 The association between ivabradine and adverse cardiovascular events in acute decompensated HFrEF patients
1. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart 2007;93:1137–46
2. Gheorghiade M. Rehospitalization for heart failure: problems and perspectives. J Am Coll Cardiol 2013;61:391-403.
3. Sakata Y, Shimokawa H. Epidemiology of heart failure in Asia. Circ J 2013;77:2209-2217.
4. Cleland JG, Swedberg K, Follath F, Komajda M, et al. The EuroHeart Failure survey programme-- a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J 2003;24:442-463
5. Shimokawa H, Miura M, Nochioka K, Sakata Y. Heart failure as a general pandemic in Asia. Eur J Heart Fail 2015;17:884-892
6. Reyes EB, Ha JW, Firdaus I, Ghazi AM, et al. Heart failure across Asia: Same healthcare burden but differences in organization of care. Int J Cardiol 2016;223:163-167.
7. Wang CC, Wu CK, Tsai ML, Lee CM, et al. 2019 Focused Update of the Guidelines of the Taiwan Society of Cardiology for the Diagnosis and Treatment of Heart Failure. Acta Cardiol Sin. 2019;35:244-283.
8. Butler J, Yang M, Manzi MA, Hess GP, Patel MJ, Rhodes T, Givertz MM. Clinical course of patients with worsening heart failure with reduced ejection fraction. J Am Coll Cardiol 2019;73:935-944.
9. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975
10. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L; SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376:875-885
11. DeVore AD, Schulte PJ, Mentz RJ, Hardy NC, et al. Relation of elevated heart rate in patients with heart failure with reduced ejection fraction to one-year outcomes and costs. Am J Cardiol. 2016;117:946-51
12. Wang CC, Chang HY, Yin WH, Wu YW, Chu PH, Wu CC, et al. TSOC-HFrEF registry: a registry of hospitalized patients with decompensated systolic heart failure: description of population and management. Acta Cardiol Sin 2016;32:400-11.
13. Chang HY, Wang CC, We YW, Chu PH, Wu CC, Hsu CH, et al. One-year outcomes of acute decompensated systolic heart failure in Taiwan: Lessons from TSOC-HFrEF registry. Acta Cardiol Sin 2017;33:127-38.
14. Ponikowski P, Jankowska EA. Pathogenesis and clinical presentation of acute heart failure. Rev Esp Cardiol (Engl Ed) 2015;68:331–337.
15. Claret P-G, Stiell IG, Yan JW, Clement CM, Rowe BH, Calder LA, et al. Hemodynamic, management, and outcomes of patients admitted to emergency department with heart failure. Scand J Trauma Resusc Emerg Med. 2016;24:132.
16. Kapłon-Cieślicka A, Balsam P1, Ozierański K, Tymińska A, Peller M, Galas M, Wyzgał M, Marchel M, Drożdż J, Opolski G. Resting heart rate at hospital admission and its relation to hospital outcome in patients with heart failure. Cardiol J. 2014;21:425-33.
17. Bui AL, Grau-Sepulveda MV, Hernandez AF, Peterson ED, Yancy CW, Bhatt DL, et al. Admission heart rate and in-hospital outcomes in patients hospitalized for heart failure in sinus rhythm and in atrial fibrillation. American Heart Journal. 2013;165(4):567-74.e6.
18. Tavazzi L, Senni M, Metra M, Gorini M, Cacciatore G, Chinaglia A, et al. Multicenter prospective observational study on acute and chronic heart failure: one-year follow-up results of IN-HF (Italian Network on Heart Failure) outcome registry. Circ Heart Fail. 2013;6:473-81.
19. Greene SJ, Vaduganathan M, Wilcox JE, Harinstein ME, Maggioni AP, Subacius H, et al. The prognostic significance of heart rate in patients hospitalized for heart failure with reduced ejection fraction in sinus rhythm: insights from the EVEREST (Efficacy of Vasopressin Antagonism in Heart Failure: Outcome Study With Tolvaptan) trial. JACC Heart Fail. 2013;1:488-96.
20. Kitai T, Grodin JL, Mentz RJ, Hernandez AF, Butler J, Metra M, et al. Insufficient reduction in heart rate during hospitalization despite beta-blocker treatment in acute decompensated heart failure: insights from the ASCEND-HF trial. Eur J Heart Fail. 2017;19:241-249.
21. Freeman GL, Little WC, O'Rourke RA. Influence of heart rate on left ventricular performance in conscious dogs. Circ Res. 1987;61:455-64.
22. Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H. Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J. 1994;15:164-70.
23. Maggioni AP, Anker SD, Dahlström U, Filippatos G, Ponikowski P, Zannad F, Amir O, Chioncel O, Leiro MC, Drozdz J, Erglis A, Fazlibegovic E, Fonseca C, Fruhwald F, Gatzov P, Goncalvesova E, Hassanein M, Hradec J, Kavoliuniene A, Lainscak M, Logeart D, Merkely B, Metra M, Persson H, Seferovic P, Temizhan A, Tousoulis D, Tavazzi L; Heart Failure Association of the ESC. Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12,440 patients of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 2013;15:1173–1184.
24. Greene SJ, Butler J, Albert NM, DeVore AD, Sharma PP, Duffy CI, Hill CL, McCague K, Mi X, Patterson JH, Spertus JA, Thomas L, Williams FB, Hernandez AF,FonarowGC. Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry. J Am Coll Cardiol 2018;72:351–366.
25. McMurray JJV, DeMets DL, Inzucchi SE, Køber L, Kosiborod MN, Langkilde AM, et al. The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline characteristics. Eur J Heart Fail. 2019;21:1402-1411.
26. Komajda M, Tavazzi L, Swedberg K, Böhm M, Borer JS, Moyne A, et al. Chronic exposure to ivabradine reduces readmissions in the vulnerable phase after hospitalization for worsening systolic heart failure: a post-hoc analysis of SHIFT. Eur J Heart Fail. 2016;18:1182-9.
27. Hidalgo FJ, Anguita M, Castillo JC, Rodríguez S, Pardo L, Durán E, et al. Effect of early treatment with ivabradine combined with beta-blockers versus beta-blockers alone in patients hospitalised with heart failure and reduced left ventricular ejection fraction (ETHIC-AHF): A randomised study. Int J Cardiol. 2016;217:7-11
28. Lopatin YM, Cowie MR, Grebennikova AA, Sisakian HS, Pagava ZM, Hayrapetyan HG, et al. Optimization of heart rate lowering therapy in hospitalized patients with heart failure: Insights from the Optimize Heart Failure Care Program. Int J Cardiol. 2018;260:113-117.
29. Prins KW, Neill JM, Tyler JO, Eckman PM, Duval S. Effects of Beta-Blocker withdrawal in acute decompensated heart failure: A systematic review and meta-analysis. JACC Heart failure. 2015;3:647-53.
30. Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525-33.
Chapter 3.2 Cost-effectiveness evaluation of add-on dapagliflozin for heart failure with reduced ejection fraction from perspective of healthcare systems in Asia-Pacific region
1. Savarese G, Lund LH. Global Public Health Burden of Heart Failure. Card Fail Rev. 2017;3(1):7-11.
2. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart failure. Int J Cardiol. 2014;171(3):368-76.
3. Urbich M, Globe G, Pantiri K, et al. A Systematic Review of Medical Costs Associated with Heart Failure in the USA (2014-2020). Pharmacoeconomics. 2020;38(11):1219-1236.
4. Corrao G, Ghirardi A, Ibrahim B, Merlino L, Maggioni AP. Burden of new hospitalization for heart failure: a population-based investigation from Italy. Eur J Heart Fail. 2014;16(7):729-36.
5. Delgado JF, Oliva J, Llano M, et al. Health care and nonhealth care costs in the treatment of patients with symptomatic chronic heart failure in Spain. Rev Esp Cardiol (Engl Ed). 2014 Aug;67(8):643-50.
6. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891-975.
7. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995-2008.
8. McEwan P, Darlington O, McMurray JJV, et al. Cost-effectiveness of dapagliflozin as a treatment for heart failure with reduced ejection fraction: a multinational health-economic analysis of DAPA-HF. Eur J Heart Fail. 2020;22(11):2147-2156.
9. Yao Y, Zhang R, An T, Zhao X, Zhang J. Cost-effectiveness of adding dapagliflozin to standard treatment for heart failure with reduced ejection fraction patients in China. ESC Heart Fail. 2020;7(6):3582–92.
10. Savira F, Wang BH, Kompa AR, et al. Cost-effectiveness of dapagliflozin in chronic heart failure: an analysis from the Australian healthcare perspective. Eur J Prev Cardiol. 2020;2047487320938272.
11. Krittayaphong R, Permsuwan U. Cost-utility analysis of add-on dapagliflozin treatment in heart failure with reduced ejection fraction. Int J Cardiol. 2021;322:183-190.
12. Parizo JT, Goldhaber-Fiebert JD, Salomon JA, Khush KK, Spertus JA, Heidenreich PA, Sandhu AT. Cost-effectiveness of Dapagliflozin for Treatment of Patients With Heart Failure With Reduced Ejection Fraction. JAMA Cardiol. 2021 Aug 1;6(8):926-935.
13. Ministry of the Interior, Taiwan. Annual report of life table in Taiwan area. Accessed on September 3, 2021 from https://ws.moi.gov.tw/001/Upload/400/relfile/0/4405/48349492-6f8c-453b-a9d1-4a8f0593b979/year/year.html.
14. Health Technology Assessment of Center for Drug Evaluation, Taiwan. Taiwan Guidelines of Methodological Standards for Pharmacoeconomic Evaluation. Accessed on September 3, 2021 from https://www.cde.org.tw/HTA/history.
15. National Statistics, Taiwan. Annual change of Consumer Price Indices in Taiwan area. Accessed on May 20, 2021 from https://eng.stat.gov.tw/ct.asp?xItem=12092&ctNode=1558&mp=5.
16. Sullivan PW, Ghushchyan V. Preference-Based EQ-5D index scores for chronic conditions in the United States. Med Decis Making. 2006;26(4):410-20.
17. Tanaka A, Node K. Clinical application of sodium-glucose cotransporter 2 inhibitor into a real-world setting of heart failure care. Cardiovasc Diabetol. 2020 Sep 2;19(1):132.
Chapter 3.3 Cost-effectiveness evaluation of add-on empagliflozin in patients with heart failure and a reduced ejection fraction from the healthcare system's perspective in the Asia-Pacific region
1. Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovascular Pathology. 2012;21(5):365-371.
2. Guo Y, Lip GY, Banerjee A. Heart failure in East Asia. Current cardiology reviews. 2013;9(2):112-122.
3. Savarese G, Lund LH. Global public health burden of heart failure. Cardiac failure review. 2017;3(1):7.
4. Huang CH, Chien KL, Chen WJ, et al. Impact of heart failure and left ventricular function on long‐term survival—Report of a community‐based cohort study in Taiwan. European journal of heart failure. 2007;9(6-7):587-593.
5. Tseng CH. Clinical features of heart failure hospitalization in younger and elderly patients in Taiwan. European journal of clinical investigation. 2011;41(6):597-604.
6. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European heart journal. 2016;37(27):2129-2200.
7. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circulation: Heart Failure. 2013;6(3):606-619.
8. McMurray JJ, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. New England Journal of Medicine. 2019;381(21):1995-2008.
9. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. New England Journal of Medicine. 2020;383(15):1413-1424.
10. McEwan P, Darlington O, McMurray JJ, et al. Cost‐effectiveness of dapagliflozin as a treatment for heart failure with reduced ejection fraction: a multinational health‐economic analysis of DAPA‐HF. European journal of heart failure. 2020;22(11):2147-2156.
11. Savira F, Wang BH, Kompa AR, et al. Cost-effectiveness of dapagliflozin in chronic heart failure: an analysis from the Australian healthcare perspective. Eur J Prev Cardiol. 2020;2047487320938272.
12. Krittayaphong R, Permsuwan U. Cost-utility analysis of add-on dapagliflozin treatment in heart failure with reduced ejection fraction. Int J Cardiol. 2021;322:183-190.
13. Chan DC, Heidenreich PA, Weinstein MC, Fonarow GC. Heart failure disease management programs: a cost-effectiveness analysis. American heart journal. 2008;155(2):332-338.
14. Gaziano TA, Fonarow GC, Claggett B, et al. Cost-effectiveness Analysis of Sacubitril/Valsartan vs Enalapril in Patients With Heart Failure and Reduced Ejection Fraction. JAMA Cardiology. 2016;1(6):666-672.
15. Briggs A, Sculpher M, Claxton K. Decision modelling for health economic evaluation. Oup Oxford; 2006.
16. "Life expectancy and Healthy life expectancy, data by country". World Health Organization. 2020. Accessed on September 10, 2021 from https://apps.who.int/gho/data/node.main.688
17. Ministry of the Interior, Taiwan. Annual report of life table in Taiwan area. Accessed on September 3, 2021 from https://ws.moi.gov.tw/001/Upload/400/relfile/0/4405/48349492-6f8c-453b-a9d1-4a8f0593b979/year/year.html.
18. Sonnenberg FA, Beck JR. Markov models in medical decision making: a practical guide. Medical decision making. 1993;13(4):322-338.
19. Sullivan PW, Ghushchyan V. Preference-based EQ-5D index scores for chronic conditions in the United States. Medical Decision Making. 2006;26(4):410-420.
20. Lee MC, Liao CT, Toh HS, et al. Cost-effectiveness analysis of rivaroxaban plus aspirin versus aspirin alone in secondary prevention among patients with chronic cardiovascular diseases. Cardiovascular drugs and therapy. 2020:1-9.
21. "World Economic Outlook Database, October 2020". World Economic Outlook. International Monetary Fund 2020.
22. Bertram MY, Lauer JA, De Joncheere K, et al. Cost–effectiveness thresholds: pros and cons. Bulletin of the World Health Organization. 2016;94(12):925.
23. Briggs AH, Ades A, Price MJ. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework. Medical Decision Making. 2003;23(4):341-350.
24. Briggs AH. Handling uncertainty in cost-effectiveness models. Pharmacoeconomics. 2000;17(5):479-500.
25. Inomata T, Izumi T, Kobayashi M. Cost-effectiveness analysis of carvedilol for the treatment of chronic heart failure in Japan. Circ J. 2004 Jan;68(1):35-40.
26. Park SK, Hong SH, Kim H, Kim S, Lee EK. Cost-utility analysis of sacubitril/valsartan use compared with standard care in chronic heart failure patients with reduced ejection fraction in South Korea. Clinical therapeutics. 2019;41(6):1066-1079.
27. Liang L, Wu D. BC, Aziz MIA, et al. Cost-effectiveness of sacubitril/valsartan versus enalapril in patients with heart failure and reduced ejection fraction. Journal of medical economics. 2018;21(2):174-181.
28. Permsuwan U, Phrommintikul A, Silavanich V. Cost-Effectiveness of Cardiac Resynchronization Therapy in Patients with Heart Failure in Thailand. Clinicoeconomics and Outcomes Research: CEOR. 2020;12:579.
29. Chin KL, Zomer E, Wang BH, Liew D. Cost-effectiveness of switching patients with heart failure and reduced ejection fraction to sacubitril/valsartan: the Australian perspective. Heart, Lung and Circulation. 2020;29(9):1310-1317.
30. Chapman RH, Berger M, Weinstein MC, Weeks JC, Goldie S, Neumann PJ. When does quality‐adjusting life‐years matter in cost‐effectiveness analysis? Health economics. 2004;13(5):429-436.
31. Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. The Lancet. 2020;396(10254):819-829.
32. Sibbald B, Roland M. Understanding controlled trials. Why are randomised controlled trials important? BMJ: British Medical Journal. 1998;316(7126):201.
Chapter 4.1 Higher hypertension prevalence, lower incidence, and aggressive treatment with decreasing mortality, cardiovascular and cerebrovascular incidence in Taiwan from 2005 to 2010: a two population-based cohorts study
1. Kario K, Chen C-H, Park S, et al. Consensus document on improving hypertension management in Asian patients, taking into account Asian characteristics. Hypertension 2018;71:375–82.
2. Shimada K, Fujita T, Ito S, et al. The importance of home blood pressure measurement for preventing stroke and cardiovascular disease in hypertensive patients: a sub-analysis of the Japan Hypertension Evaluation with Angiotensin II Antagonist Losartan Therapy (J- HEALTH) study, a prospective nationwide observational study. Hypertens Res 2008;31:1903–11.
3. Paek KW, Chun KH, Lee KW. Relationship between metabolic syndrome and familial history of hypertension/stroke, diabetes, and cardiovascular disease. J Korean Med Sci 2006;21:701–8.
4. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 2011;123:e18–209.
5. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 2011;123:933–44.
6. Sarki AM, Nduka CU, Stranges S, et al. Prevalence of hypertension in low-and middle-income countries: a systematic review and meta- analysis. Medicine 2015;94:
7. Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016;134:441–50.
8. Wang G, Grosse SD, Schooley MW. Conducting research on the economics of hypertension to improve cardiovascular health. Am J Prevent Med 2017;53:S115–7.
9. Quan H, Chen G, Tu K, et al. Outcomes among 3.5 million newly diagnosed hypertensive Canadians. Can J Cardiol 2013;29:592–7.
10. Hara M, Tanaka S, Taniguchi M, et al. Prognostic value of pre-dialysis blood pressure and risk threshold on clinical outcomes in hemodialysis patients: The Q-Cohort Study. Medicine 2018;97:
11. Zanchetti A. Therapeutic approaches, age and ethnicity in hypertension. J Hypertens 2017;35:1331–2.
12. Ashor AW, Lara J, Siervo M. Medium-term effects of dietary nitrate supplementation on systolic and diastolic blood pressure in adults: a systematic review and meta-analysis. J Hypertens 2017;35:1353–9.
13. Chobanian A. National heart, lung, and blood institute; national high blood pressure education program coordinating committee. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003;42:1206–52.
14. Mahajan R. Joint National Committee 8 report: How it differ from JNC 7. Int J Appl Basic Med Res 2014;4:61.
15. Chiang C-E, Wang T-D, Li Y-H, et al. 2010 guidelines of the Taiwan Society of Cardiology for the management of hypertension. J Formosan Med Assoc 2010;109:740–73.
16. Chiang C-E, Wang T-D, Ueng K-C, et al. 2015 guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the management of hypertension. J Chin Med Assoc 2015;78:1–47.
17. Chien K-L, Hsu H-C, Sung F-C, et al. Incidence of hypertension and risk of cardiovascular events among ethnic Chinese: report from a community-based cohort study in Taiwan. J Hypertens 2007;25: 1355–61.
18. Jarari N, Rao N, Peela JR, et al. A review on prescribing patterns of antihypertensive drugs. Clin Hypertens 2015;22:7.
19. Cheng T-J, Guo H-R, Chang C-Y, et al. The association between peptic ulcer disease and ischemic stroke: a population-based longitudinal study. Medicine 2016 May;95(22):e3797.
20. Y-H, Li, Ueng KC, Jeng J-S, et al. Taiwan Lipid guidelines for high risk patients. J Formosan Med Assoc 2017;116:217–48. 2016;95(22).
21. Boo S, Yoon YJ, Oh H. Evaluating the prevalence, awareness, and control of hypertension, diabetes, and dyslipidemia in Korea using the NHIS-NSC database: a cross-sectional analysis. Medicine 2018;97:
22. Mancia G, Rea F, Corrao G, et al. Two-drug combinations as first-step antihypertensive treatment. Circ Res 2019;124:1113–23.
23. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018;71:e127–248.
24. Group SR. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2015;373:2103–16.
25. Paz MA, de-La-Sierra A, Sáez M, et al. Treatment efficacy of anti- hypertensive drugs in monotherapy or combination: ATOM systematic review and meta-analysis of randomized clinical trials according to PRISMA statement. Medicine 2016;95:
26. Borghi C, Dormi A, L’Italien G, et al. The relationship between systolic blood pressure and cardiovascular risk-results of the Brisighella Heart Study. J Clin Hypertens 2003;5:47–52.
27. Collaboration PSAGE-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360:1903–13.
28. Collaboration APCSBlood pressure indices and cardiovascular disease in the Asia Pacific region: a pooled analysis. Hypertension 2003;42:69–75.
29. Sesso HD, Stampfer MJ, Rosner B, et al. Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. Hypertension 2000;36:801–7.
30. Franklin SS, Khan SA, Wong ND, et al. Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study. Circulation 1999;100:354–60.
31. Glynn RJ, L’Italien GJ, Sesso HD, et al. Development of predictive models for long-term cardiovascular risk associated with systolic and diastolic blood pressure. Hypertension 2002;39:105–10.
32. Oh HJ, Lee S, Lee E-K, et al. Association of blood pressure components with mortality and cardiovascular events in prehypertensive individuals: a nationwide population-based cohort study. Ann Med 2018;50:443–52.
Chapter 4.2 Economic evaluation of new blood pressure target for hypertensive patients in Taiwan. according to the 2022 hypertension clinical practice guidelines of the Taiwan society of cardiology: a simulation modeling study
1. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014 Feb 5;311(5):507-20.
2. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021-104.
3. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018 Oct 23;138(17):e426-e483.
4. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016 Mar 5;387(10022):957-967.
5. SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015 Nov 26;373(22):2103-16.
6. Douros A, Tölle M, Ebert N, Gaedeke J, Huscher D, Kreutz R, et al. Control of blood pressure and risk of mortality in a cohort of older adults: the Berlin Initiative Study. Eur Heart J. 2019 Jul 1;40(25):2021-2028.
7. Zhang W, Zhang S, Deng Y, Wu S, Ren J, Sun G, et al. Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension. N Engl J Med. 2021 Sep 30;385(14):1268-1279.
8. Wang TD, Chiang CE, Chao TH, Cheng HM, Wu YW, Wu YJ, et al. 2022 Guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the Management of Hypertension. Acta Cardiol Sin. 2022 May;38(3):225-325.
9. Bress AP, Bellows BK, King JB, Hess R, Beddhu S, Zhang Z, et al. Cost-Effectiveness of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2017 Aug 24;377(8):745-755.
10. Richman IB, Fairley M, Jørgensen ME, Schuler A, Owens DK, Goldhaber-Fiebert JD. Cost-effectiveness of Intensive Blood Pressure Management. JAMA Cardiol. 2016 Nov 1;1(8):872-879.
11. Health Technology Assessment of Center for Drug Evaluation, Taiwan. Taiwan Guidelines of Methodological Standards for Pharmacoeconomic Evaluation. Accessed on May 3, 2022 from https://www.cde.org.tw/HTA/history.
12. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021 Jul 1;42(25):2439-2454.
13. SCORE2-OP working group and ESC Cardiovascular risk collaboration, SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions, European Heart Journal, Volume 42, Issue 25, 1 July 2021, Pages 2455-2467
14. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014 Jun 24;129(25 Suppl2): S49-73.
15. Chien KL, Hsu HC, Su TC, Chang WT, Chen PC, Sung FC, et al. Constructing a point-based prediction model for the risk of coronary artery disease in a Chinese community: a report from a cohort study in Taiwan. Int J Cardiol. 2012 May 31;157(2):263-8.
16. Ministry of the Interior, Republic of China (Taiwan), Life Tables. Accessed on April 3, 2022. https://www.moi.gov.tw/english/cl.aspx?n=7779
17. Burnier M, Egan BM. Adherence in Hypertension. Circ Res. 2019 Mar 29;124(7):1124-1140.
18. Iskedjian M, Einarson TR, MacKeigan LD, Shear N, Addis A, Mittmann N, et al. Relationship between daily dose frequency and adherence to antihypertensive pharmacotherapy: evidence from a meta-analysis. Clin Ther. 2002 Feb;24(2):302-16.
19. Bank of Taiwan. Accessed on June 1, 2022. https://rate.bot.com.tw/xrt?Lang=zh-TW
20. International Monetary Fund. World Economic Outlook Database, 19 April 2022. Accessed on 19 May 2022. https://www.imf.org/en/Home
21. Bertram MY, Lauer JA, De Joncheere K, Edejer T, Hutubessy R, Kieny MP, et al. Cost–effectiveness thresholds: pros and cons. Bull World Health Organ.(2016) 94:925. doi: 10.2471/BLT.15.164418
22. Briggs AH. Handling uncertainty in cost-effectiveness models. Pharmacoeconomics. (2000) 17:479–500. doi: 10.2165/00019053-200017050-00006
23. Taiwan Ministry of Health and Welfare. Cause of Death Statistics. https ://www.mohw.gov.tw/np-128-2.html. Accessed 30 May 2019.
24. Chia YC, Buranakitjaroen P, Chen CH, Divinagracia R, Hoshide S, Park S, et al. Current status of home blood pressure monitoring in Asia: Statement from the HOPE Asia Network. J Clin Hypertens (Greenwich). 2017;19(11):1192-1201.
25. Cheng HM, Lin HJ, Wang TD, Chen CH. Asian management of hypertension: Current status, home blood pressure, and specific concerns in Taiwan. J Clin Hypertens (Greenwich). 2020 Mar;22(3):511-514.
26. Taiwan Health Promotion Administration MoHaW. National Health Interview Survey. https ://www.hpa.gov.tw/. Accessed on June 10, 2022.
27. Liao CT, Yang CT, Kuo FH, Lee MC, Chang WT, Tang HJ, et al. Cost-Effectiveness Evaluation of Add-on Empagliflozin in Patients With Heart Failure and a Reduced Ejection Fraction From the Healthcare System's Perspective in the Asia-Pacific Region. Front Cardiovasc Med. 2021 Oct 29;8:750381.
28. Liao CT, Yang CT, Toh HS, Chang WT, Chang HY, Kuo FH, et al. Cost-effectiveness evaluation of add-on dapagliflozin for heart failure with reduced ejection fraction from perspective of healthcare systems in Asia-Pacific region. Cardiovasc Diabetol. 2021 Oct 9;20(1):204.
29. Lee MC, Liao CT, Toh HS, Chou CC, Chang WT, Chen ZC, et al. Cost-effectiveness analysis of rivaroxaban plus aspirin versus aspirin alone in secondary prevention among patients with chronic cardiovascular diseases. Cardiovasc Drugs Ther. 2021 Jun;35(3):539-547.
30. Liao CT, Lee MC, Chen ZC, Ku LE, Wang JD, Toh HS. Cost-Effectiveness Analysis of Oral Anticoagulants in Stroke Prevention among Patients with Atrial Fibrillation in Taiwan. Acta Cardiol Sin. 2020 Jan;36(1):50-61.
31. Li C, Chen K, Cornelius V, Tomeny E, Wang Y, Yang X, et al. Applicability and cost-effectiveness of the Systolic Blood Pressure Intervention Trial (SPRINT) in the Chinese population: A cost-effectiveness modeling study. PLoS Med. 2021 Mar 4;18(3):e1003515.
32. Lin SF, Kuo TT, Pan WH, Bai CH. Effects of socioeconomic status on the control of hypertension in patients <65 and ≥65 years of age in Taiwan: a nationwide cross-sectional study. BMJ Open. 2022 Feb 23;12(2):e050041.
Chapter 4.3 Cost-effectiveness of intensive vs standard blood pressure control among patients with hypertension
1. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018 Nov 10;392(10159):1923-1994.
2. Frohlich ED, Apstein C, Chobanian AV, et al. The heart in hypertension. N Engl J Med. 1992 Oct 1;327(14):998-1008.
3. Mills KT, Bundy JD, Kelly TN, et al. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation. 2016 Aug 9;134(6):441-50.
4. Wright JT Jr, Williamson JD, Whelton PK, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015 Nov 26;373(22):2103-16.
5. Bellows BK, Bress AP, Moran A. Cost-Effectiveness of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2017 Nov 30;377(22):2199-2200.
6. Li C, Chen K, Cornelius V, et al. Applicability and cost-effectiveness of the Systolic Blood Pressure Intervention Trial (SPRINT) in the Chinese population: A cost-effectiveness modeling study. PLoS Med. 2021 Mar 4;18(3):e1003515.
7. Qaseem A, Wilt TJ, Rich R, et a. Pharmacologic Treatment of Hypertension in Adults Aged 60 Years or Older to Higher Versus Lower Blood Pressure Targets: A Clinical Practice Guideline From the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2017 Mar 21;166(6):430-437.
8. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Sep 1;39(33):3021-3104.
9. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018 May 15;71(19):e127-e248.
10. Hua Q, Fan L, Li J; Joint Committee for Guideline Revision. 2019 Chinese guideline for the management of hypertension in the elderly. J Geriatr Cardiol. 2019 Feb;16(2):67-99.
11. Zhang W, Zhang S, Deng Y, et al. Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension. N Engl J Med. 2021 Sep 30;385(14):1268-1279.
12. Chen T, Shao F, Chen K, et al. Time to Clinical Benefit of Intensive Blood Pressure Lowering in Patients 60 Years and Older With Hypertension: A Secondary Analysis of Randomized Clinical Trials. JAMA Intern Med. 2022 Jun 1;182(6):660-667.
13. Bress AP, Bellows BK, King JB, et al. Cost-Effectiveness of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2017 Aug 24;377(8):745-755.
14. Richman IB, Fairley M, Jørgensen ME, Schuler A, Owens DK, Goldhaber-Fiebert JD. Cost-effectiveness of Intensive Blood Pressure Management. JAMA Cardiol. 2016 Nov 1;1(8):872-879.
15. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, et al. Recommendations for Conduct, Methodological Practices, and Reporting of Cost-effectiveness Analyses: Second Panel on Cost-Effectiveness in Health and Medicine. JAMA. 2016 Sep 13;316(10):1093-103.
16. National Institute of Health and Care Excellence. Developing NICE Guidelines: The Manual; National Institute for Health and Care Excellence; 2014.
17. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021 Jul 1;42(25):2439-2454.
18. SCORE2-OP working group and ESC Cardiovascular risk collaboration, SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions, European Heart Journal, Volume 42, Issue 25, 1 July 2021, Pages 2455–2467
19. China age-specific mortality. Access on 15 March 2022. http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/html/A0604a.htm
20. Social Security. Actuarial Life Table. Access on 15 March 2022. https://www.ssa.gov/oact/STATS/table4c6.html
21. Office for National Statistics. Deaths: Deaths broken down by age, sex, area and cause of death. Access on 15 March 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths
22. Burnier M, Egan BM. Adherence in Hypertension. Circ Res. 2019 Mar 29;124(7):1124-1140.
23. Iskedjian M, Einarson TR, MacKeigan LD, et al. Relationship between daily dose frequency and adherence to antihypertensive pharmacotherapy: evidence from a meta-analysis. Clin Ther. 2002 Feb;24(2):302-16.
24. The Organisation for Economic Co-operation and Development (OECD) Data. Purchasing power parities (PPP). Total, National currency units/US dollar, 2000–2021. Access on 20, March, 2022. https://data.oecd.org/conversion/exchange-rates.htm#indicator-chart
25. Yang X, Li J, Hu D, et al. Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China). Circulation. 2016 Nov 8;134(19):1430-1440.
26. Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014 Jun 24;129(25 Suppl 2):S49-73.
27. Xie X, He T, Kang J, Siscovick DS, Li Y, Pagán JA. Cost-effectiveness analysis of intensive hypertension control in China. Prev Med. 2018 Jun;111:110-114.
Chapter 5.1 Association of adherence to antiretroviral therapy with economic burden of cardiovascular disease in HIV-infected population
1. Feinstein MJ, Bahiru E, Achenbach C, et al. Patterns of Cardiovascular Mortality for HIV-Infected Adults in the United States: 1999 to 2013. Am J Cardiol. 2016; 117: 214-20.
2. Freiberg MS, Chang CC, Kuller LH, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med. 2013; 173: 614-22.
3. Marcus JL, Leyden WA, Chao CR, et al. HIV infection and incidence of ischemic stroke. AIDS. 2014; 28: 1911-9.
4. Butt AA, Chang CC, Kuller L, et al. Risk of heart failure with human immunodeficiency virus in the absence of prior diagnosis of coronary heart disease. Arch Intern Med. 2011; 171: 737-43.
5. Freiberg MS, McGinnis KA, Kraemer K, et al. The association between alcohol consumption and prevalent cardiovascular diseases among HIV-infected and HIV-uninfected men. J Acquir Immune Defic Syndr. 2010; 53: 247-53.
6. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011; 62: 141-55.
7. Kaplan RC, Sinclair E, Landay AL, et al. T cell activation predicts carotid artery stiffness among HIV-infected women. Atherosclerosis. 2011; 217: 207-13.
8. Grinspoon S and Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med. 2005; 352: 48-62.
9. Friis-Moller N, Sabin CA, Weber R, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med. 2003; 349: 1993-2003.
10. Ladapo JA, Richards AK, DeWitt CM, et al. Disparities in the Quality of Cardiovascular Care Between HIV-Infected Versus HIV-Uninfected Adults in the United States: A Cross-Sectional Study. J Am Heart Assoc. 2017; 6.
11. Burkholder GA, Tamhane AR, Salinas JL, et al. Underutilization of aspirin for primary prevention of cardiovascular disease among HIV-infected patients. Clin Infect Dis. 2012; 55: 1550-7.
12. Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ and Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999; 353: 2093-9.
13. Strategies for Management of Antiretroviral Therapy Study G, El-Sadr WM, Lundgren J, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006; 355: 2283-96.
14. Zicari S, Sessa L, Cotugno N, et al. Immune activation, inflammation, and non-AIDS co-morbidities in HIV-infected patients under long-term ART. Viruses. 2019; 11: 200.
15. Bezabhe WM, Chalmers L, Bereznicki LR and Peterson GM. Adherence to Antiretroviral Therapy and Virologic Failure: A Meta-Analysis. Medicine (Baltimore). 2016; 95: e3361.
16. Insight Start Study Group., Lundgren JD, Babiker AG, et al. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N Engl J Med. 2015; 373: 795-807.
17. Ortego C, Huedo-Medina TB, Llorca J, et al. Adherence to highly active antiretroviral therapy (HAART): a meta-analysis. AIDS Behav. 2011; 15: 1381-96.
18. Shubber Z, Mills EJ, Nachega JB, et al. Patient-Reported Barriers to Adherence to Antiretroviral Therapy: A Systematic Review and Meta-Analysis. PLoS Med. 2016; 13: e1002183.
19. Neuhaus J, Jacobs DR, Jr., Baker JV, et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 2010; 201: 1788-95.
20. Borges AH, Silverberg MJ, Wentworth D, et al. Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers. AIDS. 2013; 27: 1433-41.
21. Borges AH, O'Connor JL, Phillips AN, et al. Interleukin 6 Is a Stronger Predictor of Clinical Events Than High-Sensitivity C-Reactive Protein or D-Dimer During HIV Infection. J Infect Dis. 2016; 214: 408-16.
22. Feinstein MJ, Hsue PY, Benjamin LA, et al. Characteristics, Prevention, and Management of Cardiovascular Disease in People Living With HIV: A Scientific Statement From the American Heart Association. Circulation. 2019; 140: e98-e124.
23. Hernández S, Vidal M and Pedrol E. Evaluación del riesgo cardiovascular e intervención en los pacientes con VIH. Enfermedades Infecciosas y Microbiología Clínica. 2009; 27: 40-7.
24. Pirro M, Francisci D, Bianconi V, et al. NUtraceutical TReatment for hYpercholesterolemia in HIV-infected patients: the NU-TRY (HIV) randomized cross-over trial. Atherosclerosis. 2019; 280: 51-7.
25. Shah ASV, Stelzle D, Lee KK, et al. Global Burden of Atherosclerotic Cardiovascular Disease in People Living With HIV. Circulation. 2018; 138: 1100-12.
26. Lam WY and Fresco P. Medication adherence measures: an overview. BioMed research international. 2015; 2015.
27. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for Conduct, Methodological Practices, and Reporting of Cost-effectiveness Analyses: Second Panel on Cost-Effectiveness in Health and Medicine. JAMA. 2016; 316: 1093-103.
28. Barai N, Monroe A, Lesko C, et al. The Association Between Changes in Alcohol Use and Changes in Antiretroviral Therapy Adherence and Viral Suppression Among Women Living with HIV. AIDS Behav. 2017; 21: 1836-45.
29. Messou E, Chaix ML, Gabillard D, et al. Association between medication possession ratio, virologic failure and drug resistance in HIV-1-infected adults on antiretroviral therapy in Cote d'Ivoire. J Acquir Immune Defic Syndr. 2011; 56: 356-64.
30. Messou E, Kouakou M, Gabillard D, et al. Medication possession ratio: predicting and decreasing loss to follow-up in antiretroviral treatment programs in Cote d'Ivoire. J Acquir Immune Defic Syndr. 2011; 57 Suppl 1: S34-9.
31. Ballinger GA. Using generalized estimating equations for longitudinal data analysis. Organizational research methods. 2004; 7: 127-50.
32. Wang M. Generalized estimating equations in longitudinal data analysis: a review and recent developments. Advances in Statistics. 2014.
33. Kahm K, Laxy M, Schneider U, Rogowski WH, Lhachimi SK and Holle R. Health Care Costs Associated With Incident Complications in Patients With Type 2 Diabetes in Germany. Diabetes Care. 2018; 41: 971-8.
34. Chen J, Liu L, Shih YC, Zhang D and Severini TA. A flexible model for correlated medical costs, with application to medical expenditure panel survey data. Stat Med. 2016; 35: 883-94.
35. Nordell AD, McKenna M, Borges AH, et al. Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation. J Am Heart Assoc. 2014; 3: e000844.
36. Hemkens LG and Bucher HC. HIV infection and cardiovascular disease. Eur Heart J. 2014; 35: 1373-81.
37. Paula AA, Falcao MC and Pacheco AG. Metabolic syndrome in HIV-infected individuals: underlying mechanisms and epidemiological aspects. AIDS Res Ther. 2013; 10: 32.
38. Gardner EM, Maravi ME, Rietmeijer C, Davidson AJ and Burman WJ. The association of adherence to antiretroviral therapy with healthcare utilization and costs for medical care. Appl Health Econ Health Policy. 2008; 6: 145-55.
39. Cheng CL, Kao YHY, Lin SJ, Lee CH and Lai ML. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiology and drug safety. 2011; 20: 236-42.
40. Cheng C-L, Lee C-H, Chen P-S, Li Y-H, Lin S-J and Yang Y-HK. Validation of acute myocardial infarction cases in the national health insurance research database in taiwan. Journal of epidemiology. 2014; 24: 500-7.
41. McCormick N, Bhole V, Lacaille D and Avina-Zubieta JA. Validity of diagnostic codes for acute stroke in administrative databases: a systematic review. PLoS One. 2015; 10: e0135834.
42. Lin C-C, Lai M-S, Syu C-Y, Chang S-C and Tseng F-Y. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. Journal of the Formosan Medical Association. 2005; 104: 157-63.
43. Wu C-S, Lai M-S, Gau SS-F, Wang S-C and Tsai H-J. Concordance between patient self-reports and claims data on clinical diagnoses, medication use, and health system utilization in Taiwan. PloS one. 2014; 9: e112257.
44. Centers for Disease Control ROCT. HIV/AIDS case report 2016. 2018-01-04.
45. Marks King R, Vidrine DJ, Danysh HE, et al. Factors associated with nonadherence to antiretroviral therapy in HIV-positive smokers. AIDS patient care and STDs. 2012; 26: 479-85.
46. O’Cleirigh C, Valentine SE, Pinkston M, et al. The unique challenges facing HIV-positive patients who smoke cigarettes: HIV viremia, ART adherence, engagement in HIV care, and concurrent substance use. AIDS and Behavior. 2015; 19: 178-85.
47. Shuter J and Bernstein SL. Cigarette smoking is an independent predictor of nonadherence in HIV-infected individuals receiving highly active antiretroviral therapy. Nicotine & Tobacco Research. 2008; 10: 731-6.
48. Webb MS, Vanable PA, Carey MP and Blair DC. Medication adherence in HIV-infected smokers: the mediating role of depressive symptoms. AIDS Education and prevention. 2009; 21: 94-105.
49. Lichtenstein KA, Armon C, Buchacz K, et al. Low CD4+ T cell count is a risk factor for cardiovascular disease events in the HIV outpatient study. Clinical Infectious Diseases. 2010; 51: 435-47.
50. Toh HS, Yang CT, Yang KL, et al. Reduced economic burden of AIDS-defining illnesses associated with adherence to antiretroviral therapy. Int J Infect Dis. 2019; 91: 44-9.
Chapter 5.2 Assessment of subclinical cardiac dysfunction by speckle tracking echocardiography among people living with HIV
1. UNAIDS. UNAIDS Data 2022. Access on 5, October 2022. https://www.unaids.org/sites/default/files/media_asset/2022-global-aids-update_en.pdf
2. So-Armah K, Benjamin LA, Bloomfield GS, Feinstein MJ, Hsue P, Njuguna B, et al. HIV and cardiovascular disease. Lancet HIV. 2020 Apr;7(4):e279-e293.
3. Marcus JL, Leyden WA, Chao CR, Chow FC, Horberg MA, Hurley LB, et al. HIV infection and incidence of ischemic stroke. AIDS. 2014 Aug 24;28(13):1911-9.
4. Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med. 2013 Apr 22;173(8):614-22.
5. Butt AA, Chang C-C, Kuller L, Goetz MB, Leaf D, Rimland D, et al. Risk of heart failure with human immunodeficiency virus in the absence of prior diagnosis of coronary heart disease. Arch Intern Med. 2011 Apr 25;171(8):737-43.
6. Boettiger D, Law M, Ross J, Huy B, Heng B, Ditangco R, et al. Atherosclerotic cardiovascular disease screening and management protocols among adult HIV clinics in Asia. J Virus Erad. 2020 Feb 20;6(1):11-18.
7. Wu P-Y, Chen M-Y, Hsieh S-M, Sun H-Y, Tsai M-S, Lee K-Y, et al. Comorbidities among the HIV-infected patients aged 40 years or older in Taiwan. PLoS One. 2014;9(8):e104945.
8. Shahbaz S, Manicardi M, Guaraldi G, Raggi P. Cardiovascular disease in human immunodeficiency virus infected patients: A true or perceived risk? World J Cardiol. 2015;7(10):633.
9. Pyarali F, Iordanov R, Ebner B, Grant J, Vincent L, Toirac A, et al. Cardiovascular disease and prevention among people living with HIV in South Florida. Medicine (Baltimore). 2021 Jul 16;100(28):e26631.
10. Choi JY, Lui GCY, Liao CT, Yang CJ. Managing cardiovascular risk in people living with HIV in Asia - where are we now? HIV Med. 2022 Feb;23(2):111-120.
11. Ballocca F, Gili S, D'Ascenzo F, Marra WG, Cannillo M, Calcagno A, Bonora S, Flammer A, Coppola J, Moretti C, Gaita F. HIV Infection and Primary Prevention of Cardiovascular Disease: Lights and Shadows in the HAART Era. Prog Cardiovasc Dis. 2016 Mar-Apr;58(5):565-76.
12. Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zacà V, et al. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med. 2011 Jan;30(1):71-83.
13. Mondillo S, Cameli M, Caputo ML, Lisi M, Palmerini E, Padeletti M, et al. Early detection of left atrial strain abnormalities by speckle-tracking in hypertensive and diabetic patients with normal left atrial size. J Am Soc Echocardiogr. 2011;24(8):898-908.
14. Sims A, Frank L, Cross R, Clauss S, Dimock D, Purdy J, et al. Abnormal cardiac strain in children and young adults with HIV acquired in early life. J Am Soc Echocardiogr. 2012 Jul;25(7):741-8.
15. Onur I, Ikitimur B, Oz F, Ekmekci A, Elitok A, Cagatay AA, et al. Evaluation of human immunodeficiency virus infection-related left ventricular systolic dysfunction by tissue Doppler strain echocardiography. Echocardiography. 2014 Nov;31(10):1199-204.
16. Capotosto L, D'Ettorre G, Ajassa C, Cavallari N, Ciardi MR, Placanica G, et al. Assessment of Biventricular Function by Three-Dimensional Speckle Tracking Echocardiography in Adolescents and Young Adults with Human Immunodeficiency Virus Infection: A Pilot Study. Cardiology. 2019;144(3-4):101-111.
17. Rodrigues RC, Azevedo KML, Moscavitch SD, Setubal S, Mesquita CT. The Use of Two-Dimensional Strain Measured by Speckle Tracking in the Identification of Incipient Ventricular Dysfunction in HIV-Infected Patients on Antiretroviral Therapy, Untreated HIV Patients and Healthy Controls. Arq Bras Cardiol. 2019 Sep 2;113(4):737-745.
18. Cincin A, Ozben B, Tukenmez Tigen E, Sunbul M, Sayar N, Gurel E, et al. Ventricular and atrial functions assessed by speckle-tracking echocardiography in patients with human immunodeficiency virus. J Clin Ultrasound. 2021 May;49(4):341-350.
19. Mirea O, Manescu M, Iordache S, Marcu A, Donoiu I, Istratoaie O, et al. Echocardiography Assessment of Cardiac Function in Adults Living with HIV: A Speckle Tracking Study in the Era of Antiretroviral Therapy. J Clin Med. 2022 Jun 30;11(13):3792.
20. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321-60.
21. Chang WT, Feng YH, Kuo YH, Chen WY, Wu HC, Huang CT, et al. Layer-specific distribution of myocardial deformation from anthracycline-induced cardiotoxicity in patients with breast cancer-From bedside to bench. Int J Cardiol. 2020 Jul 15;311:64-70.
22. Cohen J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ Psychol Meas 1973;33:107–112
23. Nagata Y, Wu VC, Otsuji Y, Takeuchi M. Normal range of myocardial layer-specific strain using two-dimensional speckle tracking echocardiography. PLoS One. 2017 Jun 29;12(6):e0180584.
24. Ancedy Y, Ederhy S, Jean ML, Nhan P, Soulat-Dufour L, Adavane-Scheuble S, et al. Does layer-specific strain using speckle tracking echocardiography improve the assessment of left ventricular myocardial deformation? A review. Arch Cardiovasc Dis. 2020 Nov;113(11):721-735.
25. Bloomfield GS, Alenezi F, Barasa FA, Lumsden R, Mayosi BM, Velazquez EJ. Human Immunodeficiency Virus and Heart Failure in Low- and Middle-Income Countries. JACC Heart Fail. 2015 Aug;3(8):579-90.
26. Vandormael A, Rego F, Danaviah S, Carlos Junior Alcantara L, Boulware DR, de Oliveira T. CD4+ T-cell Count may not be a Useful Strategy to Monitor Antiretroviral Therapy Response in HTLV-1/HIV Co-infected Patients. Curr HIV Res. 2017;15(3):225-231.
27. Gambo A, Moodley I, Babashani M, Babalola TK, Gqaleni N. A double-blind, randomized controlled trial to examine the effect of Moringa oleifera leaf powder supplementation on the immune status and anthropometric parameters of adult HIV patients on antiretroviral therapy in a resource-limited setting. PLoS One. 2021 Dec 31;16(12):e0261935.
28. Masenga SK, Hamooya BM, Nzala S, Kwenda G, Heimburger DC, Mutale W, et al. Patho-immune Mechanisms of Hypertension in HIV: a Systematic and Thematic Review. Curr Hypertens Rep. 2019 Jun 4;21(7):56.
29. Oh JK, Park JH. Role of strain echocardiography in patients with hypertension. Clin Hypertens. 2022 Feb 15;28(1):6.
30. European AIDS Clinical Society. EACS Guidelines Version 11.1. Access on 30, October 2022: https://www.eacsociety.org/media/guidelines-11.1_final_09-10.pdf
31. Simon MA, Lacomis CD, George MP, Kessinger C, Weinman R, McMahon D, et al. Isolated right ventricular dysfunction in patients with human immunodeficiency virus. J Card Fail. 2014 Jun; 20(6): 414–21.
32. Schwarze-Zander C, Pabst S, Hammerstingl C, Ohlig J, Wasmuth JC, Boesecke C, et al. Pulmonary hypertension in HIV infection: a prospective echocardiographic study. HIV Med. 2015 Oct;16(9):578-82.
33. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O. Reliability of left ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging. 2012 Feb; 13(2): 159–68.
Chapter 5.3 Group-based trajectory modelling to identify patterns of myocardial strain and its predictors in people living with HIV: two-years longitudinal follow-up with speckle tracking echocardiogram
1. UNAIDS. UNAIDS Data 2022. Access on 20, December 2022. https://www.unaids.org/sites/default/files/media_asset/2022-global-aids-update_en.pdf
2. Buell KG, Chung C, Chaudhry Z, Puri A, Nawab K, Ravindran RP. Lifelong antiretroviral therapy or HIV cure: The benefits for the individual patient. AIDS Care. 2016;28(2):242-6.
3. Islam, F. M. A., Wu, J., Jansson, J., & Wilson, D. P. (2018). Relative risk of cardiovascular disease among people living with HIV: A systematic review and meta-analysis. HIV Medicine, 19(10), 688-697.
4. Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med. 2013 Apr 22;173(8):614-22.
5. Thienemann F, Sliwa K, Rockstroh JK. HIV and the heart: the impact of antiretroviral therapy: a global perspective. Eur Heart J. 2013 Dec;34(46):3538-46.
6. Jespersen NA, Axelsen F, Dollerup J, N繪rgaard M, Larsen CS. The burden of non-communicable diseases and mortality in people living with HIV (PLHIV) in the pre-, early- and late-HAART era. HIV Med. 2021 Jul;22(6):478-490.
7. Lumsden RH, Bloomfield GS. The Causes of HIV-Associated Cardiomyopathy: A Tale of Two Worlds. Biomed Res Int. 2016;2016:8196560.
8. Cameli M, Ciccone MM, Maiello M, Modesti PA, Muiesan ML, Scicchitano P, Novo S, Palmiero P, Saba PS, Pedrinelli R; Gruppo di Studio Ipertensione, Prevenzione e Riabilitazione, Società Italiana di Cardiologia. Speckle tracking analysis: a new tool for left atrial function analysis in systemic hypertension: an overview. J Cardiovasc Med (Hagerstown). 2016 May;17(5):339-43.
9. Gunasekaran P, Panaich S, Briasoulis A, Cardozo S, Afonso L. Incremental Value of Two Dimensional Speckle Tracking Echocardiography in the Functional Assessment and Characterization of Subclinical Left Ventricular Dysfunction. Curr Cardiol Rev. 2017;13(1):32-40.
10. Lotti R, De Marzo V, Della Bona R, Porto I, Rosa GM. Speckle-tracking echocardiography: state of art and its applications. Minerva Med. 2021 May 5.
11. Dohi K, Sugiura E, Ito M. Utility of strain-echocardiography in current clinical practice. J Echocardiogr. 2016 Jun;14(2):61-70.
12. Athanasiadi E, Bonou M, Basoulis D, Kapelios CJ, Masoura C, Skouloudi M, Mavrogeni S, Aggeli C, Psichogiou M, Barbetseas J. Subclinical Left Ventricular Systolic Dysfunction in HIV Patients: Prevalence and Associations with Carotid Atherosclerosis and Increased Adiposity. J Clin Med. 2022 Mar 24;11(7):1804.
13. Mendes L, Silva D, Miranda C, Sá J, Duque L, Duarte N, Brito P, Bernardino L, Poças J. Impact of HIV infection on cardiac deformation. Rev Port Cardiol. 2014 Sep;33(9):501-9.
14. Mirea O, Manescu M, Iordache S, Marcu A, Donoiu I, Istratoaie O, Dumitrescu F, Militaru C. Echocardiography Assessment of Cardiac Function in Adults Living with HIV: A Speckle Tracking Study in the Era of Antiretroviral Therapy. J Clin Med. 2022 Jun 30;11(13):3792.
15. Onur I, Ikitimur B, Oz F, Ekmekci A, Elitok A, Cagatay AA, et al. Evaluation of human immunodeficiency virus infection-related left ventricular systolic dysfunction by tissue Doppler strain echocardiography. Echocardiography. 2014 Nov;31(10):1199-204.
16. Capotosto L, D'Ettorre G, Ajassa C, Cavallari N, Ciardi MR, Placanica G, et al. Assessment of Biventricular Function by Three-Dimensional Speckle Tracking Echocardiography in Adolescents and Young Adults with Human Immunodeficiency Virus Infection: A Pilot Study. Cardiology. 2019;144(3-4):101-111.
17. Cincin A, Ozben B, Tukenmez Tigen E, Sunbul M, Sayar N, Gurel E, et al. Ventricular and atrial functions assessed by speckle-tracking echocardiography in patients with human immunodeficiency virus. J Clin Ultrasound. 2021 May;49(4):341-350.
18. Nguena Nguefack HL, Pagé MG, Katz J, Choinière M, Vanasse A, Dorais M, Samb OM, Lacasse A. Trajectory Modelling Techniques Useful to Epidemiological Research: A Comparative Narrative Review of Approaches. Clin Epidemiol. 2020 Oct 30;12:1205-1222.
19. Liu QQ, Du Y, Zhang R, Shen WQ, Du GQ. Evaluation of longitudinal trajectory of functional tricuspid regurgitation on the risk of right ventricular dysfunction after mitral valve replacement. J Card Surg. 2022 Nov;37(11):3995-4001.
20. Alhazami M, Pontinha VM, Patterson JA, Holdford DA. Medication Adherence Trajectories: A Systematic Literature Review. J Manag Care Spec Pharm. 2020 Sep;26(9):1138-1152.
21. Nagin DS. Group-based trajectory modeling: an overview. Ann Nutr Metab 2014; 65: 205–210
22. Nagin DS, Jones BL, Passos VL, Tremblay RE. Group-based multi-trajectory modeling. Stat Methods Med Res 2018; 27: 2015–2023.
23. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321-60.
24. Chang WT, Feng YH, Kuo YH, Chen WY, Wu HC, Huang CT, et al. Layer-specific distribution of myocardial deformation from anthracycline-induced cardiotoxicity in patients with breast cancer-From bedside to bench. Int J Cardiol. 2020 Jul 15;311:64-70.
25. Nagin DS. Group-Based Modeling of Development. Harvard University Press; 2005.
26. Wang Q, Gao Y, Tan K, Xia H, Li P. Assessment of left ventricular function by three-dimensional speckle-tracking echocardiography in well-treated type 2 diabetes patients with or without hypertension. J Clin Ultrasound. 2015 Oct;43(8):502-11.
27. Vitarelli A, Martino F, Capotosto L, Martino E, Colantoni C, Ashurov R, Ricci S, Conde Y, Maramao F, Vitarelli M, De Chiara S, Zanoni C. Early myocardial deformation changes in hypercholesterolemic and obese children and adolescents: a 2D and 3D speckle tracking echocardiography study. Medicine (Baltimore). 2014 Sep;93(12):e71.
28. Cameli M, Ciccone MM, Maiello M, Modesti PA, Muiesan ML, Scicchitano P, Novo S, Palmiero P, Saba PS, Pedrinelli R; Gruppo di Studio Ipertensione, Prevenzione e Riabilitazione, Società Italiana di Cardiologia. Speckle tracking analysis: a new tool for left atrial function analysis in systemic hypertension: an overview. J Cardiovasc Med (Hagerstown). 2016 May;17(5):339-43.
29. Choi H, Dey AK, Sharma G, Bhoite R, Burkholder G, Fedson S, Jneid H. Etiology and pathophysiology of heart failure in people with HIV. Heart Fail Rev. 2021 May;26(3):497-505.
30. Syed FF, Sani MU. Recent advances in HIV-associated cardiovascular diseases in Africa. Heart. 2013 Aug;99(16):1146-53.
31. Lumsden RH, Bloomfield GS. The Causes of HIV-Associated Cardiomyopathy: A Tale of Two Worlds. Biomed Res Int. 2016;2016:8196560.
32. Fitch KV. Contemporary Lifestyle Modification Interventions to Improve Metabolic Comorbidities in HIV. Curr HIV/AIDS Rep. 2019 Dec;16(6):482-491.
33. Sabin CA. Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy? BMC Med. 2013 Nov 27;11:251.
34. Hoang V, Alam M, Addison D, Macedo F, Virani S, Birnbaum Y. Efficacy of Angiotensin-Converting Enzyme Inhibitors and Angiotensin-Receptor Blockers in Coronary Artery Disease without Heart Failure in the Modern Statin Era: a Meta-Analysis of Randomized-Controlled Trials. Cardiovasc Drugs Ther. 2016 Apr;30(2):189-98.
35. Nardolillo JA, Marrs JC, Anderson SL, Hanratty R, Saseen JJ. Retrospective cohort study of statin prescribing for primary prevention among people living with HIV. JRSM Cardiovasc Dis. 2021 Jul 12;10:20480040211031068.
Chapter 6 General Discussion
1. Alwan A. Global status report on noncommunicable diseases 2010: World Health Organization; 2011.
2. Busse R and Blümel M. Tackling chronic disease in Europe: strategies, interventions and challenges: WHO Regional Office Europe; 2010.
3. Tsiachristas A, Stein V, Evers S and Rutten-van-Moelken M. Economic evaluation of integrated care: a research agenda. Health Economics Special Interest Group. 2016.
4. Nolte E and Pitchforth E. What is the evidence on the economic impacts of integrated care? 2014.
5. Payne K, McAllister M and Davies LM. Valuing the economic benefits of complex interventions: when maximising health is not sufficient. Health economics. 2013;22:258-271.
6. Ham C, Smith J and Eastmure E. Commissioning integrated care in a liberated NHS: Nuffield Trust London; 2011.
7. Gröne O and Garcia-Barbero M. Integrated care: a position paper of the WHO European Office for Integrated Health Care Services. International journal of integrated care. 2001;1.
8. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I and Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. Bmj. 2008;337:a1655.
9. Wagner EH, Austin BT, Davis C, Hindmarsh M, Schaefer J and Bonomi A. Improving chronic illness care: translating evidence into action. Health affairs. 2001;20:64-78.
10. Conklin A, Nolte E and Vrijhoef H. Approaches to chronic disease management evaluation in use in Europe: a review of current methods and performance measures. International journal of technology assessment in health care. 2013;29:61-70.
11. Conklin A and Nolte E. Disease management evaluation: A comprehensive review of current state of the art. Rand health quarterly. 2011;1.
12. Gray AM, Clarke PM, Wolstenholme JL and Wordsworth S. Applied methods of cost-effectiveness analysis in healthcare: Oxford University Press; 2011.
13. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL and Torrance GW. Methods for the economic evaluation of health care programmes: Oxford university press; 2015.
14. Mathes T, Jacobs E, Morfeld J-C and Pieper D. Methods of international health technology assessment agencies for economic evaluations-a comparative analysis. BMC health services research. 2013;13:371.
15. Tsiachristas A, Waters BH, Adams SA, Bal R and Rutten-van M’lken MP. Identifying and explaining the variability in development and implementation costs of disease management programs in the Netherlands. BMC health services research. 2014;14:518.
16. Tsiachristas A, Cramm JM, Nieboer A and Rutten-van Mölken M. Broader economic evaluation of disease management programs using multi-criteria decision analysis. International Journal of Technology Assessment in Health Care. 2013;29:301-308.
17. Steuten L, Vrijhoef B, Severens H, Van Merode F and Spreeuwenberg C. Are we measuring what matters in health technology assessment of disease management? Systematic literature review. International journal of technology assessment in health care. 2006;22:47-57.
18. Huber M, Knottnerus JA, Green L, van der Horst H, Jadad AR, Kromhout D, Leonard B, Lorig K, Loureiro MI and van der Meer JW. How should we define health? Bmj. 2011;343:d4163.
19. Tsiachristas A, Dikkers C, Boland MR and Rutten-van Mölken MP. Exploring payment schemes used to promote integrated chronic care in Europe. Health Policy. 2013;113:296-304.
20. Busse R and Mays N. Paying for chronic disease care. Caring for people with chronic conditions. 2008:195.
21. Eijkenaar F, Emmert M, Scheppach M and Schöffski O. Effects of pay for performance in health care: a systematic review of systematic reviews. Health policy. 2013;110:115-130.
22. Song Z, Rose S, Safran DG, Landon BE, Day MP and Chernew ME. Changes in health care spending and quality 4 years into global payment. New England Journal of Medicine. 2014;371:1704-1714.
23. Tsiachristas A, Burgers L and Rutten-van Mölken MP. Cost-effectiveness of disease management programs for cardiovascular risk and COPD in the Netherlands. Value in Health. 2015;18:977-986.
24. Tsiachristas A, Cramm JM, Nieboer AP and Rutten-van Mölken MP. Changes in costs and effects after the implementation of disease management programs in the Netherlands: variability and determinants. Cost effectiveness and resource allocation. 2014;12:17.
25. Excellence NIfC. Behaviour change: the principles for effective interventions. London: NICE public health guidance. 2007;6.
26. Bodenheimer T and Handley MA. Goal-setting for behavior change in primary care: an exploration and status report. Patient education and counseling. 2009;76:174-180.
27. Rickles D. Causality in complex interventions. Medicine, Health Care and Philosophy. 2009;12:77-90.
28. Boaz A, Baeza J, Fraser A and Group EISC. Effective implementation of research into practice: an overview of systematic reviews of the health literature. BMC research notes. 2011;4:212
29. Craig P, Cooper C, Gunnell D, Haw S, Lawson K, Macintyre S, Ogilvie D, Petticrew M, Reeves B and Sutton M. Using natural experiments to evaluate population health interventions: new Medical Research Council guidance. J Epidemiol Community Health. 2012;66:1182-1186.
30. Baltussen R and Niessen L. Priority setting of health interventions: the need for multi-criteria decision analysis. Cost effectiveness and resource allocation. 2006;4:14.
31. Goetghebeur MM, Wagner M, Khoury H, Levitt RJ, Erickson LJ and Rindress D. Bridging health technology assessment (HTA) and efficient health care decision making with multicriteria decision analysis (MCDA) applying the EVIDEM framework to medicines appraisal. Medical decision making. 2012;32:376-388.
32. Knai C, Nolte E, Brunn M, Elissen A, Conklin A, Pedersen JP, Brereton L, Erler A, Frølich A and Flamm M. Reported barriers to evaluation in chronic care: experiences in six European countries. Health Policy. 2013;110:220-228.
33. Serxner S, Baker K and Gold D. Guidelines for analysis of economic return from health management programs. American Journal of Health Promotion. 2006;20:1-18.
34. Steuten L, Vrijhoef B, Merode FV, Wesseling G-J and Spreeuwenberg C. Evaluation of a regional disease management programme for patients with asthma or chronic obstructive pulmonary disease. International Journal for Quality in Health Care. 2006;18:429-436.
35. Goodwin N, Stein V and Amelung V. What is integrated care? Handbook integrated care: Springer; 2017: 3-23.
36. Social care institute for excellence. Selecting the right measures to understand and measure impact. . 2020.
37. Downing A, Rudge G, Cheng Y, Tu Y-K, Keen J and Gilthorpe MS. Do the UK government's new Quality and Outcomes Framework (QOF) scores adequately measure primary care performance? A cross-sectional survey of routine healthcare data. BMC health services research. 2007;7:166.
38. Beecham J and Knapp M. Costing psychiatric interventions. Measuring mental health needs. 2001;2:200-224.
39. Bouwmans C, Krol M, Severens H, Koopmanschap M, Brouwer W and Hakkaart-van Roijen L. The iMTA productivity cost questionnaire: a standardized instrument for measuring and valuing health-related productivity losses. Value in health. 2015;18:753-758.
40. Thorn JC, Coast J, Cohen D, Hollingworth W, Knapp M, Noble SM, Ridyard C, Wordsworth S and Hughes D. Resource-use measurement based on patient recall: issues and challenges for economic evaluation. Applied health economics and health policy. 2013;11:155-161.
41. Mason J, Freemantle N, Nazareth I, Eccles M, Haines A and Drummond M. When is it cost-effective to change the behavior of health professionals? Jama. 2001;286:2988-2992.
42. Hoomans T, Fenwick EA, Palmer S and Claxton K. Value of Information and Value of Implementation: Application of an Analytic Framework to Inform Resource Allocation Decisions in Metastatic Hormone‐Refractory Prostate Cancer. Value in Health. 2009;12:315-324.
43. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, Augustovski F, Briggs AH, Mauskopf J and Loder E. Consolidated health economic evaluation reporting standards (CHEERS) statement. International journal of technology assessment in health care. 2013;29:117-122.
44. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC and Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Annals of internal medicine. 2007;147:573-577