| 研究生: |
游力蓁 Yu, Li-Zhen |
|---|---|
| 論文名稱: |
摻雜銻於以射頻電漿沉積之氧化鋅透明導電薄膜光電特性研究 Investigation for The Electrical and ptical Properties of Antimony Doped ZnO Films Grown by RF Sputtering |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 銻 、濺鍍 、擴散 、氧化鋅 |
| 外文關鍵詞: | ZnO, antimony, sputtering, diffusion |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在本研究之中,我們以擴散的方式將銻(antimony)金屬摻雜至氧化鋅薄膜內,用以製備銻攙雜的氧化鋅透明導電薄膜,而將銻攙雜至氧化鋅之後可以得到很好的導電度,並且在紫外光區有很高的穿透率。在不同溫度和不同時間熱處理薄膜之後,我們研究銻摻雜氧化鋅薄膜在光電特性上的表現,而研究結果顯示,將銻摻雜至氧化鋅薄膜後可以有效率地提升載子濃度並且降低電阻率,在光特性方面,隨著銻摻雜至氧化鋅薄膜,薄膜的吸收邊界往短波段飄移。在本研究之中,我們以900℃在氮器環境下將銻攙雜的氧化鋅薄膜熱處理1分鐘,結果薄膜的電阻率降低至5.1×10-4 Ω-cm,並且隨著銻攙雜至氧化鋅薄膜的重量百分比從3wt%增加至6wt%,載子濃度(ne)增加並且達到最大值1.16x1020cm-3,薄膜在可見光波段也有超過90%的穿透率。因為Burstein-Moss效應,原本氧化鋅能隙約為3.31eV,在摻雜6wt%銻至氧化鋅薄膜後,薄膜的吸收邊界大約在364.1nm,計算此時能隙則放大至3.406eV。而銻摻雜於氧化鋅薄膜後,功函數從5.3eV 放大至5.6eV。由於鋅與銻的離子半徑分別為0.72 Å 和0.76 Å,使得攙雜銻於氧化鋅薄膜後的晶格常數c從5.185Å 放大為 5.198Å,晶格常數a則從3.175Å 放大為 3.183 Å。
Abstract
In this study, the Antimony (Sb) -doped zinc oxide films were prepared by diffusing Antimony into ZnO films. Sb -doped zinc oxide film ware found to possess superior conductivity and transmittance at ultraviolet wavelength. We investigated the optical and electrical performances of these films which are treated by various annealing times and temperatures. The results showed that Sb-doped ZnO films could effectively increase carrier concentration and decrease resistivity of the films. The optical absorption edge of ZnO films shifted toward a short wavelength with Sb doped in the ZnO films. The electrical properties of Sb-doped ZnO film annealed at 900℃ in N2 ambience for 1 minute shows that the lowest resistivity was 5.1×10-4 Ω-cm. As Sb in ZnO films increases from 3wt% to 6wt%, carrier concentrations (ne) also increases and reach a maximum value of 1.16x1020cm-3 for 6wt% Sb-doped film. The transmittance in the visible range was above 90%. The edge of absorption is 364.1nm after doping 6wt% Sb into ZnO film, because of Burstein-Moss effect, it is calculated that the Eg of ZnO films change from 3.31eV to 3.406eV. Doping Sb into ZnO leads to the increase of work function from 5.3eV to 5.6eV. The lattice constant c shifts from 5.185Å to 5.198Å, also the lattice constant a shifts 3.175Å to 3.183 Å. This shift is because of the ionic radius of Zn and Sb is 0.72 Å and 0.76 Å, respectively.
Reference
[1] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photo -luminescence in ZnOphosphor powders” Journal of Appl. Phys. Lett. Vol.79 p.7983 (1996)
[2] K. L. Chopra, S. Major, and D. K. Pandya,“Transparent conductors—A status review” Thin solid films Vol.102 p.1 (1983)
[3] C. G. Granqvist, “Window coatings for the future” Thin solid films Vol.193-194 p.730 (1990)
[4] C. T. Lee, Q. X. Yu, B. T. Tang, H. Y. Lee, and F. T. Hwang, Investigation of indium tin oxide/zinc oxide multilayer ohmic contacts to n-type GaN isotype conjunction” Appl. Phys. Lett. Vol. 78, p.3412 (2001)
[5] P. Frach, D. Glöß, K. Goedicke, M. Fahland and W. M. Gnehr, “High rate deposition of insulating TiO2 and conducting ITO films for optical and display applications” Thin Solid Films, Vol.445 p.251 (1996)
[6] A. R. Schlatmann, D. Wilms Floet, and A. Hilberer et al., “Indium contamination from the indium–tin–oxide electrode in polymer light-emitting diodes” Appl. Phys. Lett. Vol.69 p.1764 (1996).
[7] C. L. Chao, K. R. Chuang, and S. A. Chen, “Failure phenomena and mechanisms of polymeric light-emitting diodes: Indium–tin–oxide damage” Appl. Phys. Lett. Vol.69 p.2894 (1996)
[8] J. C. Scott, J. H. Kaufman, and P. J. Brock et al., “Degradation and failure of MEH-PPV light-emitting diodes” Journal of Applied Physics Vol.79 pp.2745 (1996)
[9] D. M. Bagall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature” Appl. Phys. Lett. Vol. 70, p.2230 (1997)
[10] T. Minami, H. Sato, H. Nanto, and S. Takata, “Highty Conductive and Transparent Silicon Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering” Jpn. J. Appl. Phys. Vol.25 p.L776 (1986)
[11] G. A. Hirata, J. McKittrik, T. M. Siqueiros, J. A. Diaz, O. Contreras, and O. A. Lopez, “Synthesis and optelectronic characterization of gallium doped zinc oxide transparent lectrodes” Thin solid films Vol.288 p.29 (1996)
[12] S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties” Thin Solid Films Vol.435 p.78 (2003)
[13] E. Burstein, “Anomalous Optical Absorption Limit in InSb”Phys. Rev. Vol.93 p.632 (1954)
[14] K. C. Park, D. Y. Ma, K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering” Thin Solid Films Vol.305 p.201 (1997)
[15] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, A. Voigt, and B. E. Gnade, “Mechanisms behind green Photoluminescence in ZnO phosphor powders” J. Appl. Phys. Vol.79 p.7983 (1996).
[16] Y. Igasaki, and H. Saito, “Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire” J. Appl. Phys. Vol.69 p.2190 (1991)
[17] B. H. Choi, and H. B. Im, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering” Thin solid films, Vol. 193-194 p. 712 (1990)
[18] P. A. Wolff, “Theory of the Band Structure of Very Degenerate Semiconductors” Phys. Rev. Vol.126 p.405 (1962)
[19] T. Minami, T. Miyata, and T. Yamamoto, Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering” Surface and Coatings Technology Vol.108–109 pp.583–587 (1998)
[20] JCPDS Card NO.89-0511
[21] J. L. Lee, J. K. Mun, and B. T. Lee, ” Thermal degradation mechanism of Ti/Pt/Au Schottky contact to n-type GaAs” J. Appl. Phys. Vol. 82 p.5011 (1997)