簡易檢索 / 詳目顯示

研究生: 張椀筑
Chang, Wan-Chu
論文名稱: 考慮跳躍風險下之脆弱亞式選擇權定價
Pricing Vulnerable Asian Options with the Correlated Credit Risk under Jump-diffusion Process
指導教授: 劉裕宏
Liu, Yu-Hong
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所碩士在職專班
Graduate Institute of Finance (on the job class)
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 41
中文關鍵詞: 幾何平均亞式選擇權脆弱選擇權交易對手風險跳躍擴散過程
外文關鍵詞: geometric average Asian option, vulnerable option, counterparty risk, Jump-diffusion process
相關次數: 點閱:158下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建構在Klein(1996)的信用風險模型和Merton(1976)的跳躍-擴散過程,為具有跳躍風險的脆弱亞式選擇權定價。由於大部分亞式選擇權為場外市場交易,標準選擇權評估模型在沒有考慮交易對手的違約風險和罕見事件對交易對手資產的影響時,可能會錯估選擇權價值。因此,我們推導出一個脆弱的亞式選擇權定價公式,該公式不僅考慮違約的潛在風險,還考慮交易對手資產受到罕見事件衝擊的可能性。在此基礎上,我們透過數值分析探討信用風險和跳躍風險對選擇權價格的影響。我們的結論是,當遇到信用風險和罕見事件對交易對手資產的影響時,使用其他定價公式來評估脆弱的亞式選擇權會存在錯誤定價。

    This study extends the framework of the credit risk model in Klein (1996) and the jump-diffusion process in Merton (1976) to price the vulnerable Asian options with jump risk. Since most Asian options are traded in over-the-counter markets, the standard options valuation models may misprice options without taking counterparty default risk and the impact of rare events on counterparty assets into account. Therefore, we derive a pricing formula for vulnerable Asian options that takes not only the potential risk of default but also the potential for rare event shocks to counterparty assets into account. Furthermore, we do the numerical analysis to investigate the influence of the credit risk and jump risk on the option price. We conclude that when the credit risk and the impact of rare events on counterparty assets are encountered, there exists mispricing when using other pricing formulas to evaluate vulnerable Asian options.

    CHAPTER 1 INTRODUCTION......................1 1.1 THE RESEARCH BACKGROUND AND OBJECTIVES..1 1.2 THESIS STRUCTURE........................7 CHAPTER 2 LITERATURE REVIEW.................8 2.1 REVIEW OF ASIAN OPTION..................8 2.2 REVIEW OF JUMP-DIFFUSION PROCESS.......12 2.3 REVIEW OF THE CREDIT RISK MODEL........14 CHAPTER 3 THE MODEL........................22 CHAPTER 4 NUMERICAL ANALYSIS...............26 CHAPTER 5 CONCLUSION.......................38 REFERENCE..................................39

    Black, F., & Scholes, M. (1973). Pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.

    Chang, J. J. (2014). Pricing average exchange rate options subject to counter-party default risk. Journal of the Chinese Statistical Association, 52(2), 241-264.

    Chang, L. F., & Hung, M. W. (2006). Valuation of vulnerable American options with correlated credit risk. Review of Derivatives Research, 9(2), 137-165.

    Fard, F. A. (2015). Analytical pricing of vulnerable options under a generalized jump-diffusion model. Insurance Mathematics & Economics, 60, 19-28.

    Hull, J., & White, A. (1995). The impact of default risk on the prices of options and other derivative securities. Journal of Banking & Finance, 19(2), 299-322.

    Hung, M. W., & Liu, Y. H. (2005). Pricing vulnerable options in incomplete markets. Journal of Futures Markets, 25(2), 135-170.

    Jarrow, R. A., & Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. Journal of Finance, 50(1), 53-85.

    Jeon, J., Yoon, J. H., & Kang, M. (2016). Valuing vulnerable geometric Asian options. Computers & Mathematics with Applications, 71(2), 676-691.

    Jeon, J., Yoon, J. H., & Kang, M. (2017). Pricing vulnerable path-dependent options using integral transforms. Journal of Computational and Applied Mathematics, 313, 259-272.

    Johnson, H., & Stulz, R. (1987). The pricing of options with default risk. Journal of Finance, 42(2), 267-280.

    Kemna, A. G. Z., & Vorst, A. C. F. (1990). A pricing method for options based on average asset values. Journal of Banking & Finance, 14(1), 113-129.

    Kim, G., & Koo, E. (2016). Closed-form pricing formula for exchange option with credit risk. Chaos Solitons & Fractals, 91, 221-227.

    Klein, P. (1996). Pricing Black-Scholes options with correlated credit risk. Journal of Banking & Finance, 20(7), 1211-1229.

    Klein, P., & Inglis, M. (2001). Pricing vulnerable European options when the option's payoff can increase the risk of financial distress. Journal of Banking & Finance, 25(5), 993-1012.

    Klein, P., & Yang, J. (2010). Vulnerable American options. Managerial Finance, 36(5), 414-430.

    Ma, Y., Shrestha, K., & Xu, W. D. (2017). Pricing vulnerable options with jump clustering. Journal of Futures Markets, 37(12), 1155-1178.

    Merton, R. C. (1976). Options pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1-2), 125-144.

    Niu, H. W., & Wang, D. C. (2016). Pricing vulnerable options with correlated jump-diffusion processes depending on various states of the economy. Quantitative Finance, 16(7), 1129-1145.

    Shiu, Y. M., Chou, P. L., & Sheu, J. W. (2013). A closed-form approximation for valuing European basket warrants under credit risk and interest rate risk. Quantitative Finance, 13(8), 1211-1223.

    Tian, L. H., Wang, G. Y., Wang, X. C., & Wang, Y. J. (2014). Pricing vulnerable options with correlated credit risk under jump-diffusion processes. Journal of Futures Markets, 34(10), 957-979.

    Tsao, C. Y., & Liu, C. C. (2009). The pricing of Asian options with default risk. Research in Finance, 25, 343-369.

    Tsao, C. Y., & Liu, C. C. (2012). Asian options with credit risks: pricing and sensitivity analysis. Emerging Markets Finance and Trade, 48, 96-115.

    Wang, G. Y., Wang, X. C., & Liu, Z. Y. (2017). Pricing vulnerable American put options under jump-diffusion processes. Probability in the Engineering and Informational Sciences, 31(2), 121-138.

    Xu, W. D., Xu, W. J., Li, H. Y., & Xiao, W. L. (2012). A jump-diffusion approach to modelling vulnerable option pricing. Finance Research Letters, 9(1), 48-56.

    Xu, W. D., Xu, W. J., & Xiao, W. L. (2015). Pricing black-scholes options with correlated credit risk and jump risk. Applied Economics Letters, 22(2), 87-93.

    Xu, W. J., Liu, G. F., & Yu, X. J. (2018). A binomial tree approach to pricing vulnerable option in a vague world. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 26(1), 143-162.

    Yang, S. J., Lee, M. K., & Kim, J. H. (2014). Pricing vulnerable options under a stochastic volatility model. Applied Mathematics Letters, 34, 7-12.

    Zhou, Q., Wang, Q., & Wu, W. X. (2018). Pricing vulnerable options with variable default boundary under jump-diffusion processes. Advances in Difference Equations, Article ID 465.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE