| 研究生: |
歐倢安 Ou, Chieh-An |
|---|---|
| 論文名稱: |
促植物生長內生細菌產生之揮發性化合物對模式酵母菌 Saccharomyces cerevisiae 的抗真菌活性 Antifungal Activity of Volatile Compounds Produced by Endophytic Plant Growth-Promoting Bacteria against the Model Yeast Saccharomyces cerevisiae |
| 指導教授: |
黃浩仁
Huang, Hao-Jen |
| 共同指導教授: |
邱啟洲
Chiu, Chi-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 植物內生菌 (Plant-endophyte) 、微生物揮發性化合物 (Microbial volatile compound) 、、抗真菌活性 (Antifungal activity) 、促植物生長細菌 (Plant growth-promoting bacteria, PGPB) 、絲裂原活化蛋白激酶 (Mitogen-activated protein kinase, MAPK) |
| 外文關鍵詞: | Endophyte, Microbial volatile compound, Antifungal activity, Plant growth-promoting bacteria, Mitogen-activated protein kinase |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1.
Alic, N., Higgins, V. J., Pichova, A., Breitenbach, M., & Dawes, I. W. (2003). Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae. Journal of Biological Chemistry, 278(43), 41849-41855.
Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., & Weisskopf, L. (2014). The inter‐kingdom volatile signal indole promotes root development by interfering with auxin signalling. The Plant Journal, 80(5), 758-771.
Barra, P. J., Inostroza, N. G., Acuña, J. J., Mora, M. L., Crowley, D. E., & Jorquera, M. A. (2016). Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Applied Soil Ecology, 102, 80-91.
Bhandari, G. (2014). An overview of agrochemicals and their effects on environment in Nepal. Applied Ecology and Environmental Sciences, 2(2), 66-73.
Biliński, T., Litwińska, J., Błszczyński, M., & Bajus, A. (1989). Superoxide dismutase deficiency and the toxicity of the products of autooxidation of polyunsaturated fatty acids in yeast. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1001(1), 102-106.
Bilsland, E., Molin, C., Swaminathan, S., Ramne, A., & Sunnerhagen, P. (2004). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Molecular Microbiology, 53(6), 1743-1756.
Briard, B., Heddergott, C., & Latgé, J. P. (2016). Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio, 7(2), e00219-16.
Cabiscol, E., Piulats, E., Echave, P., Herrero, E., & Ros, J. (2000). Oxidative stress promotes specific protein damage inSaccharomyces cerevisiae. Journal of Biological Chemistry, 275(35), 27393-27398.
Chaouachi, M., Marzouk, T., Jallouli, S., Elkahoui, S., Gentzbittel, L., Ben, C., & Djébali, N. (2021). Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biology and Technology, 172, 111389.
Chaturvedi, H., Singh, V., & Gupta, G. (2016). Potential of bacterial endophytes as plant growth promoting factors. Journal of Plant Pathology & Microbiology, 7(9), 1-6.
Chen, H., Xiao, X., Wang, J., Wu, L., Zheng, Z., & Yu, Z. (2008). Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters, 30, 919-923.
Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678.
Danquah, A., de Zélicourt, A., Boudsocq, M., Neubauer, J., Frei dit Frey, N., Leonhardt, N., ... & Colcombet, J. (2015). Identification and characterization of an ABA‐activated MAP kinase cascade in Arabidopsis thaliana. The Plant Journal, 82(2), 232-244.
Danquah, A., De Zélicourt, A., Colcombet, J., & Hirt, H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 32(1), 40-52.
De Zélicourt, A., Colcombet, J., & Hirt, H. (2016). The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science, 21(8), 677-685.
Di Pasqua, R., Hoskins, N., Betts, G., & Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. Journal of Agricultural and Food Chemistry, 54(7), 2745-2749.
Dichtl, K., Samantaray, S., & Wagener, J. (2016). Cell wall integrity signalling in human pathogenic fungi. Cellular Microbiology, 18(9), 1228-1238.
Elkahoui, S., Djébali, N., Yaich, N., Azaiez, S., Hammami, M., Essid, R., & Limam, F. (2015). Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani. World Journal of Microbiology and Biotechnology, 31, 175-185.
Fabrizio, P., & Longo, V. D. (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2(2), 73-81.
Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L. L., Diaspro, A., ... & Longo, V. D. (2004). Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. Journal of Cell Biology, 166(7), 1055-1067.
Farag, M. A., Ryu, C. M., Sumner, L. W., & Paré, P. W. (2006). GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67(20), 2262-2268.
Farag, M. A., Song, G. C., Park, Y. S., Audrain, B., Lee, S., Ghigo, J. M., ... & Ryu, C. M. (2017). Biological and chemical strategies for exploring inter-and intra-kingdom communication mediated via bacterial volatile signals. Nature Protocols, 12(7), 1359-1377.
Ferreira, J. J., Del Castillo, R. R., Perez-Vega, E., Plans, M., Simó, J., & Casanas, F. (2012). Sensory changes related to breeding for plant architecture and resistance to viruses and anthracnose in bean market class Fabada (Phaseolus vulgaris L.). Euphytica, 186, 687-696.
Fiddaman, P. J., & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology, 74(2), 119-126.
Gamalero, E., & Glick, B. R. (2011). Mechanisms used by plant growth-promoting bacteria. Bacteria in Agrobiology: Plant Nutrient Management, 17-46.
Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27-39.
Ghosh, P. K., Sen, S. K., & Maiti, T. K. (2015). Production and metabolism of IAA by Enterobacter spp.(Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. Biocatalysis and Agricultural Biotechnology, 4(3), 296-303.
Godon, C., Lagniel, G., Lee, J., Buhler, J. M., Kieffer, S., Perrot, M., ... & Labarre, J. (1998). The H2O2 stimulon in Saccharomyces cerevisiae. Journal of Biological Chemistry, 273(35), 22480-22489.
Gotor-Vila, A., Teixidó, N., Di Francesco, A., Usall, J., Ugolini, L., Torres, R., & Mari, M. (2017). Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiology, 64, 219-225.
Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F., & Zitouni, A. (2013). Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World Journal of Microbiology and Biotechnology, 29, 1821-1829.
Groenhagen, U., Baumgartner, R., Bailly, A., Gardiner, A., Eberl, L., Schulz, S., & Weisskopf, L. (2013). Production of bioactive volatiles by different Burkholderia ambifaria strains. Journal of Chemical Ecology, 39, 892-906.
Gupta, R., & Chakrabarty, S. K. (2013). Gibberellic acid in plant: still a mystery unresolved. Plant Signaling & Behavior, 8(9), e25504.
Gust, A. A., Brunner, F., & Nürnberger, T. (2010). Biotechnological concepts for improving plant innate immunity. Current Opinion in Biotechnology, 21(2), 204-210.
Gustin, M. C., Albertyn, J., Alexander, M., & Davenport, K. (1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 62(4), 1264-1300.
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895-914.
Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., ... & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293-320.
Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., & de Bont, J. A. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 12(10), 409-415.
Huang, J. S., Peng, Y. H., Chung, K. R., & Huang, J. W. (2018). Suppressive efficacy of volatile compounds produced by Bacillus mycoides on damping-off pathogens of cabbage seedlings. The Journal of Agricultural Science, 156(6), 795-809.
Hudson, R. C., & Daniel, R. M. (1993). L-glutamate dehydrogenases: distribution, properties and mechanism. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 106(4), 767-792.
Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20(6), 619-626.
Ingram, L. O. N., & Buttke, T. M. (1985). Effects of alcohols on micro-organisms. Advances in Microbial Physiology, 25, 253-300.
Iriti, M., & Faoro, F. (2009). Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences, 10(8), 3371-3399.
Jasim, B., Jimtha John, C., Shimil, V., Jyothis, M., & Radhakrishnan, E. K. (2014). Studies on the factors modulating indole‐3‐acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. Journal of Applied Microbiology, 117(3), 786-799.
Kai, M., Effmert, U., Berg, G., & Piechulla, B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 187, 351-360.
Kazerooni, E. A., Al-Shibli, H., Nasehi, A., & Al-Sadi, A. M. (2020). Endophytic Enterobacter cloacae exhibits antagonistic activity against Pythium damping-off of cucumber. Ciência Rural, 50.
Khan, Z., Rho, H., Firrincieli, A., Hung, S. H., Luna, V., Masciarelli, O., ... & Doty, S. L. (2016). Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Current Plant Biology, 6, 38-47.
Khare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted interactions between endophytes and plant: developments and prospects. Frontiers in Microbiology, 9, 2732.
Kiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59(4), 475-483.
Kuhajda, F. P. (2006). Fatty acid synthase and cancer: new application of an old pathway. Cancer Research, 66(12), 5977-5980.
Lee, Y. J., Hoe, K. L., & Maeng, P. J. (2007). Yeast cells lacking the CIT1-encoded mitochondrial citrate synthase are hypersusceptible to heat-or aging-induced apoptosis. Molecular Biology of the Cell, 18(9), 3556-3567.
Lei, Y., Huang, Y., Wen, X., Yin, Z., Zhang, Z., & Klionsky, D. J. (2022). How cells deal with the fluctuating environment: autophagy regulation under stress in yeast and Mammalian systems. Antioxidants, 11(2), 304.
Leitão, A. L., & Enguita, F. J. (2016). Gibberellins in Penicillium strains: challenges for endophyte-plant host interactions under salinity stress. Microbiological Research, 183, 8-18.
Létoffé, S., Audrain, B., Bernier, S. P., Delepierre, M., & Ghigo, J. M. (2014). Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH. mBio, 5(1), e00944-13.
Ligterink, W., & Hirt, H. (2001). Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools.
Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W., Lim, C. K., Shaffer, B. T., ... & Paulsen, I. T. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS genetics, 8(7), e1002784.
Manoel da Silva, J., Carvalho dos Santos, T. M., Santos de Albuquerque, L., Coentro Montaldo, Y., Ubaldo Lima de Oliveira, J., Mesquita da Silva, S. G., ... & da Rocha Oliveira Teixeira, R. (2015). Potential of the endophytic bacteria ('Herbaspirillum'spp. and'Bacillus' spp.) to promote sugarcane growth. Australian Journal of Crop Science, 9(8), 754-760.
Marquez-Santacruz, H. A., Hernandez-Leon, R., Orozco-Mosqueda, M. D. C., Velazquez-Sepulveda, I., & Santoyo, G. (2010). Diversity of bacterial endophytes in roots of Mexican husk tomato plants(Physalisixocarpa) and their detection in the rhizosphere. Genetics and Molecular Research, 9(4), 2372-2380.
Matés, J. M., Pérez-Gómez, C., de Castro, I. N., Asenjo, M., & Márquez, J. (2002). Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. The International Journal of Biochemistry & Cell Biology, 34(5), 439-458.
Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128.
Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wünsche, H., & Baldwin, I. T. (2013). Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. The Plant Cell, 25(7), 2731-2747.
Minerdi, D., Bossi, S., Gullino, M. L., & Garibaldi, A. (2009). Volatile organic compounds: a potential direct long‐distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environmental Microbiology, 11(4), 844-854.
Misko, A. L., & Germida, J. J. (2002). Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiology Ecology, 42(3), 399-407.
Naznin, H. A., Kimura, M., Miyazawa, M., & Hyakumachi, M. (2013). Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes and Environments, 28(1), 42-49.
Netzker, T., Shepherdson, E. M., Zambri, M. P., & Elliot, M. A. (2020). Bacterial volatile compounds: functions in communication, cooperation, and competition. Annual Review of Microbiology, 74, 409-430.
Opdenakker, K., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. International Journal of Molecular Sciences, 13(6), 7828-7853.
Oteino, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., & Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745.
Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M., & Park, K. (2015). Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and Biophysical Research Communications, 461(2), 361-365.
Pitzschke, A., Djamei, A., Bitton, F., & Hirt, H. (2009). A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling. Molecular Plant, 2(1), 120-137.
Ramette, A., Frapolli, M., Fischer-Le Saux, M., Gruffaz, C., Meyer, J. M., Défago, G., ... & Moënne-Loccoz, Y. (2011). Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2, 4-diacetylphloroglucinol and pyoluteorin. Systematic and Applied Microbiology, 34(3), 180-188.
Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19(8), 827-837.
Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Paré, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017-1026.
Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99.
Schmidt, R., Etalo, D. W., De Jager, V., Gerards, S., Zweers, H., De Boer, W., & Garbeva, P. (2016). Microbial small talk: volatiles in fungal–bacterial interactions. Frontiers in Microbiology, 6, 1495.
Schulz, S., & Dickschat, J. S. (2007). Bacterial volatiles: the smell of small organisms. Natural Product Reports, 24(4), 814-842.
Seguí-Simarro, J. M., Testillano, P. S., Jouannic, S., Henry, Y., & Risueño, M. C. (2005). Mitogen-activated protein kinases are developmentally regulated during stress-induced microspore embryogenesis in Brassica napus L. Histochemistry and Cell Biology, 123, 541-551.
Seward, R., Willetts, J. C., Dinsdale, M. G., & Lloyd, D. (1996). The effects of ethanol, hexan‐1‐ol, and 2‐phenylethanol on cider yeast growth, viability, and energy status; synergistic inhibition. Journal of the Institute of Brewing, 102(6), 439-443.
Sharifi, R., & Ryu, C. M. (2016). Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?. Frontiers in Microbiology, 7, 196.
Sharifi, R., & Ryu, C. M. (2018). Sniffing bacterial volatile compounds for healthier plants. Current Opinion in Plant Biology, 44, 88-97.
Sheikh, A. H., Raghuram, B., Jalmi, S. K., Wankhede, D. P., Singh, P., & Sinha, A. K. (2013). Interaction between two rice mitogen activated protein kinases and its possible role in plant defense. BMC plant biology, 13(1), 1-11.
Shi, Y., Lou, K., & Li, C. (2009). Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biology and Fertility of Soils, 45, 645-653.
Shoebitz, M., Ribaudo, C. M., Pardo, M. A., Cantore, M. L., Ciampi, L., & Curá, J. A. (2009). Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biology and Biochemistry, 41(9), 1768-1774.
Sikkema, J. A. N., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201-222.
Sinha, A. K., Jaggi, M., Raghuram, B., & Tuteja, N. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signaling & Behavior, 6(2), 196-203.
Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38, 401-419.
Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438.
Spinelli, F., Cellini, A., Vanneste, J. L., Rodriguez-Estrada, M. T., Costa, G., Savioli, S., ... & Cristescu, S. M. (2012). Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees, 26, 141-152.
Switala, J., & Loewen, P. C. (2002). Diversity of properties among catalases. Archives of Biochemistry and Biophysics, 401(2), 145-154.
Thakur, M., & Sohal, B. S. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: a review. International Scholarly Research Notices, 2013.
Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033.
Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952-1965.
Wang, Z., Jia, C., Li, J., Xu, B., & Jin, Z. (2015). Identification of six mitogen-activated protein kinase (MAPK) genes in banana (Musa acuminata L. AAA group, cv. Cavendish) under infection of Fusarium Oxysporum f. sp cubense Tropical Race 4. Acta Physiologiae Plantarum, 37(6), 115.
Weisskopf, L., Schulz, S., & Garbeva, P. (2021). Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nature Reviews Microbiology, 19(6), 391-404.
Wen, X., & Klionsky, D. J. (2016). An overview of macroautophagy in yeast. Journal of Molecular Biology, 428(9), 1681-1699.
White, J. F., Kingsley, K. I., Kowalski, K. P., Irizarry, I., Micci, A., Soares, M. A., & Bergen, M. S. (2018). Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis). Plant and Soil, 422, 195-208.
Xin, G., Zhang, G., Kang, J. W., Staley, J. T., & Doty, S. L. (2009). A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biology and Fertility of Soils, 45, 669-674.
Xu, C., Liu, R., Zhang, Q., Chen, X., Qian, Y., & Fang, W. (2017). The diversification of evolutionarily conserved MAPK cascades correlates with the evolution of fungal species and development of lifestyles. Genome Biology and Evolution, 9(2), 311-322.
Yakes, F. M., & Van Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proceedings of the National Academy of Sciences, 94(2), 514-519.
Yoo, S. J., Shin, D. J., Won, H. Y., Song, J., & Sang, M. K. (2018). Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato. Mycobiology, 46(2), 147-153.
Yorimitsu, T., & Klionsky, D. J. (2005). Autophagy: molecular machinery for self-eating. Cell Death & Differentiation, 12(2), 1542-1552.
Zanke, B. W., Boudreau, K., Rubie, E., Winnett, E., Tibbles, L. A., Zon, L., ... & Woodgett, J. R. (1996). The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Current Biology, 6(5), 606-613.
Zheng, M., Shi, J., Shi, J., Wang, Q., & Li, Y. (2013). Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biological Control, 65(2), 200-206.
校內:2028-08-24公開