| 研究生: |
吳忠智 Wu, Chung-Chi |
|---|---|
| 論文名稱: |
無失真向量量化索引值壓縮演算法之研究 An Algorithmic Study on Lossless Compression of VQ Index |
| 指導教授: |
孫宏民
Sun, Hung-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 索引值 、向量量化 |
| 外文關鍵詞: | index, vector quantization |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們主要的目的是在希望能藉由影像在做向量量化編碼時,由於相鄰區塊的相似特性使得編碼後所得到的索引值表中會有很多的索引值出現局部相同的特性,而經由許多的相關研究也證實,藉由一些適當的方法來對這些索引值做更進一步的壓縮將會大大的提高向量量化編碼的壓縮比,降低位元率。
為了更進一步的能為影像的索引值表進行壓縮以降低位元率。我們將提出兩個直觀且有效的演算法,用以充分利用相鄰區塊間的編碼相似性,來達到在不增加任何失真的情況下有效的降低位元率。在演算法一中,我們建立一個稱之為關聯索引值表的表格於每個編碼字之後,使得接下來在做向量編碼的各個區塊在與先前編碼過的區塊索引值做比對時,若找不到相同的索引值則可經由這個關聯索引值表盡可能找到相同的索引值,而我們也提出了四個有效的方法來建立這個關聯索引值表並且,由於此表的建立皆可以在編碼前先訓練好,所以並不會增加編解碼時過多的負擔。經過實驗證明,我們所提出的四個方法皆明顯的降低了位元率,並且不會增加任何額外的影像失真率。而在演算法二裡,我們依照實際進行向量量化編碼時的情況,提出一個更有效的編碼架構,使得我們能明顯的降低位元率。
In this thesis, our main purpose will appear the partial same characteristic of a lot of index values by image at doing amount of vector quantization coding, because index value form that the alike characteristic of the close area piece gain after making the coding, and also prove through many related researches, by the method of some adequacy are worth to do to these indexes further compression will the huge exaltation amount of vector turn the gain the compression ratio, reducing the bit rate.
For the sake of further carry on reducing the bit rate in compression for the index value form of the image.We will put forward two coding that keep view and valid algorithms, in order to and well make use of close together area a likeness, reach to reduce the bit rate effectively under the condition of not increase any image lose.In algorithm first, we establish a form that call it as index associated list after each codeword, make connect down at the each area piece that do the vector coding at and area coded in times before an index is worth to do ratio to, if can not find the same index value and
then can find out the same index value possibly through the index associated list, and we also put forward four valid methods to establish this index associated list and, because this form of the establishment all can trains first before coding, so also can't increase the excessive burden for plait to solution yard.Through experiment certificate, four methods that we put forward are
all obvious reduced the bit rate, and don't increase any image to lose .And in the algorithm second, we adhere to carry on physically condition for amount of vector to encode, put forward a more
valid coding structure, make us be able to reduce the bit rate obviously.
[1] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform”, IEEE Trans. Comput., vol. C-23, pp.90-93, Jan.1994.
[2] A. Aravind and A. Gersho, “Image compression based on vector quantization with finite memory, ”Opt. Eng., vol.26, pp.570-580,July 1987.
[3] Y. Feng and N. M. Nasrabadi,” A Dynamic Address Vector Quantization Algorithm Based on interblock and intercolor Correlation for Color Image Coding ,”IEEE ICASSP,pp.1755-1758,1988.
[4] R.M. Gray ,” Vector Quantization,” IEEE ASSP Mag.,pp.4-29.Apr.1984.
[5] R. M. Gray and A. Gersho , Vector Quantization and Signal Compression, Boston: Kluwer,1992.
[6] D. A. Huffman, “A method for the construction of minimum redundancy codes”, Pro, IRE,40, 1098-1101, 1952.
[7] C. H. Hsieh, K. C. Chuang, and J. S. Shue,” Image compression using finite-state vector quantization with derailment compensation ,”IEEE Trans. Circuit Syst. Video Technol.,vo;.3,pp.341-349,Oct.1993.
[8] C. H. Hsieh and J.C. Tsai, “ Lossless Compression of VQ Index with Search-Order Coding,” IEEE Trans. On Image Processing, vol. 5, no. 11, pp. 1579-1582,1995.
[9] Chaur-Heh Hsieh, Jyi-Chang Tsai, and Po-Chiang Lu, “Noiseless Coding of VQ Index Using Index Grouping Algorithm ,”IEEE Tran. On Communication. Vol44, No.12,pp. 1643-1647,Dec.1996.
[10] Y.C. Hu and C. C. Chang, “Low Complexity Index-Compressed Vector Quantization for Image Compression,” IEEE Trans. On Consumer Eletronics,Vol45, No.1,Fed.1999,pp. 1225-1233.
[11] Y. Linde , A. Buzo , and R. M. Gray , “An algorithm for vector quantization design”, IEEE Trans. Commun. , vol. COM-28, pp.84-95, Jan., 1980.
[12] N.M. Nasrabadi and R.B. King, “Image coding using vector quantization : a review,” IEEE Trans. Commun. , vol. 36, pp. 657-971,Aug 1988.
[13] James A. Storer : Data Compression Methods and Theory , Computer Science Press, Maryland, 1988.
[14] N. M. Nasrabadi and Y. Feng ,” Image Compression Using Address-Vector Quantization,” IEEE Trans.Commun.,vol.38,pp. 2166-2173, Dec 1990.
[15] N. M. Nasrabadi and Y. Feng ,” A Multilayer Address Vector Quantization Technique ,”IEEE CAS-37,vol.7,pp.912-921,1990.
[16] Mark Nelson: The Data Compression Book, M&T, San Mateo, 1992.
[17] N. M. Nasrabadi ,C. Y. Choo, and Y. Feng ,” Dynamic finite-state vector quantization ,”IEEE Trans.Commun.,vol.42,pp. 2145-2154, May 1994.
[18] N. M. Nasrabadi and S. A. Rizvi ,” Next-state function for finite-state vector quantization ,” IEEE Trans. Image Processing, vol.4,pp.1592-1601,Dec.1995.
[19] W. Pennebaker , “JPEG Technical Specification, Revision 8”,Working Document No. JTCI/SC2/WG10/JPEG-8-R8, 1990.
[20] J. Rissanen and G. G. Langdon , “Arithmetic coding”, IBM J. Res. De. , 23(2), 135-149, 1985.
[21] B. Ramamurthi and A. Gersho, “Classified vector quantization of images”, IEEE Trans. on Comm., COM-34(11), 1105-1115, 1986.
[22] C. E. Shannon, “A mathematical Theory of Communication”, Bell Sys. Tech. J., 27, 379-423, 623-656, 1948.
[23] Q. Zshunke, “DPCM picture coding with adaptice prediction”, IEEE Trans. Commun. , vol. COM-25, pp. 1295-1302, Nov.1977.
[24] 吳成柯、戴善榮、程湘君、雲立實,數位影像處理,儒林圖書出版,台北,1993。
[25] 連國珍:數位影像處理,儒林圖書出版,台北,1993。
[26] 張真誠,黃國峰,陳同孝,“電子影像技術“,松崗電腦圖書資料股份有限公司,2000。
[27] 陳同孝,張真誠,黃國峰,“數位影像處理技術“,松崗電腦圖書資料股份有限公司,2001。
[28] 蔡秋城、王文豪:數位處理與分析,碁峰出版,台北,1995。