| 研究生: |
吳昌祐 Wu, Chang-You |
|---|---|
| 論文名稱: |
以三段式生物程序處理富含有機氮鹼性合金電鍍廢水 Use of Three-stage Biological Process Treating Alkaline Alloy Electroplating Wastewater Containing Nitrogenous Compounds |
| 指導教授: |
吳哲宏
Wu, Jer-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 鹼性電鍍廢水 、鹽度 、有機氮 、硝化脫硝 |
| 外文關鍵詞: | Alkaline electroplating wastewater, salinity, organic nitrogen, nitrification and denitrification |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Addy, K., Gold, A. J., Christianson, L. E., David, M. B., Schipper, L. A., & Ratigan, N. A. (2016). Denitrifying bioreactors for nitrate removal: A meta‐analysis. Journal of Environmental Quality, 45(3), 873-881.
Al-Amshawee, S., Yunus, M. Y. B. M., Vo, D.-V. N., & Tran, N. H. (2020). Biocarriers for biofilm immobilization in wastewater treatments: a review. Environmental Chemistry Letters, 18, 1925-1945.
Allison, S., & Prosser, J. I. (1993). Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil Biology and Biochemistry, 25(7), 935-941.
Barak, Y., & van Rijn, J. (2000). Atypical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrificans. Applied and environmental microbiology, 66(3), 1209-1212.
Bassin, J. P., Kleerebezem, R., Muyzer, G., Rosado, A. S., van Loosdrecht, M. C., & Dezotti, M. (2012). Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. Applied Microbiology and Biotechnology, 93, 1281-1294.
Baumann, B., van der Meer, J. R., Snozzi, M., & Zehnder, A. J. (1997). Inhibition of denitrification activity but not of mRNA induction in Paracoccus denitrificans by nitrite at a suboptimal pH. Antonie van Leeuwenhoek, 72, 183-189.
Bergmann, D. J., Hooper, A. B., & Klotz, M. G. (2005). Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history. Applied and environmental microbiology, 71(9), 5371-5382.
Beyer, S., Gilch, S., Meyer, O., & Schmidt, I. (2009). Transcription of genes coding for metabolic key functions in Nitrosomonas europaea during aerobic and anaerobic growth. Microbial Physiology, 16(3-4), 187-197.
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., & Asnicar, F. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology, 37(8), 852-857.
Brock, T. D. (1961). Milestones in microbiology. Academic Medicine, 36(7), 847.
Caffrey, J. M., Bano, N., Kalanetra, K., & Hollibaugh, J. T. (2007). Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. The ISME journal, 1(7), 660-662.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581-583.
Chakravarthy, S. S., Pande, S., Kapoor, A., & Nerurkar, A. S. (2011). Comparison of denitrification between Paracoccus sp. and Diaphorobacter sp. Applied biochemistry and biotechnology, 165, 260-269.
Chen, L., Wei, G., Zhang, Y., Wang, K., Wang, C., Deng, X., Li, Y., Xie, X., Chen, J., & Huang, F. (2023). Candidatus Accumulibacter use fermentation products for enhanced biological phosphorus removal. Water research, 246, 120713.
Chen, S.-Y., Lu, L.-A., & Lin, J.-G. (2016). Biodegradation of tetramethylammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process. Bioresource technology, 210, 88-93.
Chen, W.-Y., & Wu, J.-H. (2022). Microbiome composition resulting from different substrates influences trichloroethene dechlorination performance. Journal of Environmental Management, 303, 114145.
Chu, H., Liu, X., Ma, J., Li, T., Fan, H., Zhou, X., Zhang, Y., Li, E., & Zhang, X. (2021). Two-stage anoxic-oxic (A/O) system for the treatment of coking wastewater: Full-scale performance and microbial community analysis. Chemical Engineering Journal, 417, 129204. https://doi.org/https://doi.org/10.1016/j.cej.2021.129204
Costa, E., Pérez, J., & Kreft, J.-U. (2006). Why is metabolic labour divided in nitrification? Trends in microbiology, 14(5), 213-219.
Daims, H., Lücker, S., & Wagner, M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in microbiology, 24(9), 699-712.
Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., & Bulaev, A. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583), 504-509.
Desta, A. F., Assefa, F., Leta, S., Stomeo, F., Wamalwa, M., Njahira, M., & Appolinaire, D. (2014). Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia. PloS one, 9(12), e115576.
Fu, J., Huang, C.-H., Dang, C., & Wang, Q. (2022). A review on treatment of disinfection byproduct precursors by biological activated carbon process. Chinese Chemical Letters, 33(10), 4495-4504.
Gadda, G., & Fitzpatrick, P. F. (1999). Substrate Specificity of a Nitroalkane-Oxidizing Enzyme. Archives of Biochemistry and Biophysics, 363(2), 309-313. https://doi.org/https://doi.org/10.1006/abbi.1998.1081
Ghahramani, P., Eldyasti, A., & Leung, S. N. (2021). Open‐cell polyvinylidene fluoride foams as carriers to promote biofilm growth for biological wastewater treatment. Polymer Engineering & Science, 61(8), 2161-2171.
Giblin, A. E., Tobias, C. R., Song, B., Weston, N., Banta, G. T., & H. RIVERA-MONROY, V. (2013). The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography, 26(3), 124-131.
Gogina, E., & Quan, T. H. (2020). The nitrifying rate of Sequencing Batch Reactor when apply bio-carrier the Biochip to municipal wastewater treatment. IOP Conference Series: Materials Science and Engineering,
Gonzalez-Silva, B. M., Jonassen, K. R., Bakke, I., Østgaard, K., & Vadstein, O. (2016). Nitrification at different salinities: biofilm community composition and physiological plasticity. Water research, 95, 48-58.
Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., & Watson, S. W. (1980). Production of NO2-and N2O by nitrifying bacteria at reduced concentrations of oxygen. Applied and environmental microbiology, 40(3), 526-532.
Gorra, R., Coci, M., Ambrosoli, R., & Laanbroek, H. (2007). Effects of substratum on the diversity and stability of ammonia‐oxidizing communities in a constructed wetland used for wastewater treatment. Journal of applied microbiology, 103(5), 1442-1452.
Gruber-Dorninger, C., Pester, M., Kitzinger, K., Savio, D. F., Loy, A., Rattei, T., Wagner, M., & Daims, H. (2015). Functionally relevant diversity of closely related Nitrospira in activated sludge. The ISME journal, 9(3), 643-655.
Grunditz, C., & Dalhammar, G. (2001). Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water research, 35(2), 433-440.
Guo, J., Ma, F., Chang, C.-C., Cui, D., Wang, L., Yang, J., & Wang, L. (2009). Start-up of a two-stage bioaugmented anoxic–oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations. Bioresource technology, 100(14), 3483-3488.
Gupta, R., Poddar, B., Nakhate, S., Chavan, A., Singh, A., Purohit, H., & Khardenavis, A. (2022). Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: a nonconventional nitrogen removal pathway in wastewater treatment. Letters in Applied Microbiology, 74(2), 159-184.
Hüpeden, J., Wegen, S., Off, S., Lücker, S., Bedarf, Y., Daims, H., Kühn, C., & Spieck, E. (2016). Relative abundance of Nitrotoga spp. in a biofilter of a cold-freshwater aquaculture plant appears to be stimulated by slightly acidic pH. Applied and environmental microbiology, 82(6), 1838-1845.
Ha, J. Y., Min, J. Y., Lee, S. K., Kim, H. S., Kim, D. J., Kim, K. H., Lee, H. H., Kim, H. K., Yoon, H. J., & Suh, S. W. (2006). Crystal structure of 2-nitropropane dioxygenase complexed with FMN and substrate. Identification of the catalytic base. J Biol Chem, 281(27), 18660-18667. https://doi.org/10.1074/jbc.M601658200
He, Q., Yan, X., Wang, H., Ji, Y., Li, J., Liu, L., Bi, P., Xu, P., Xu, B., & Ma, J. (2023). Towards a better understanding of the anaerobic/oxic/anoxic-aerobic granular sludge process (AOA-AGS) for simultaneous low-strength wastewater treatment and in situ sludge reduction from ambient to winter temperatures. Environmental Research, 236, 116822.
Hernández-del Amo, E., & Bañeras, L. (2021). Effects of high nitrate input in the denitrification-DNRA activities in the sediment of a constructed wetland under varying C/N ratios. Ecological Engineering, 159, 106098. https://doi.org/https://doi.org/10.1016/j.ecoleng.2020.106098
Hu, H.-W., & He, J.-Z. (2017). Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 17, 2709-2717.
Huang, W., & Kao, C. (2016). Bioremediation of petroleum-hydrocarbon contaminated groundwater under sulfate-reducing conditions: effectiveness and mechanism study. Journal of Environmental Engineering, 142(3), 04015089.
Ilmasari, D., Kamyab, H., Yuzir, A., Riyadi, F. A., Khademi, T., Al-Qaim, F. F., Kirpichnikova, I., & Krishnan, S. (2022). A review of the biological treatment of leachate: Available technologies and future requirements for the circular economy implementation. Biochemical Engineering Journal, 187, 108605.
Jeong, H. J., Lee, K. H., Du Yoo, Y., Kang, N. S., Song, J. Y., Kim, T. H., Seong, K. A., Kim, J. S., & Potvin, E. (2018). Effects of light intensity, temperature, and salinity on the growth and ingestion rates of the red-tide mixotrophic dinoflagellate Paragymnodinium shiwhaense. Harmful Algae, 80, 46-54.
Ji, J., Peng, Y., Wang, B., Li, X., & Zhang, Q. (2020). A novel SNPR process for advanced nitrogen and phosphorus removal from mainstream wastewater based on anammox, endogenous partial-denitrification and denitrifying dephosphatation. Water research, 170, 115363.
Junier, P., Molina, V., Dorador, C., Hadas, O., Kim, O.-S., Junier, T., Witzel, K.-P., & Imhoff, J. F. (2010). Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Applied Microbiology and Biotechnology, 85, 425-440.
Körner, H., & Zumft, W. (1989). Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Applied and environmental microbiology, 55(7), 1670-1676.
Kamar, M. T., Elattar, H., Mahmoud, A. S., Peters, R. W., & Mostafa, M. K. (2022). A critical review of state-of-the-art technologies for electroplating wastewater treatment. International Journal of Environmental Analytical Chemistry, 1-34.
Kantor, R. S., Huddy, R. J., Iyer, R., Thomas, B. C., Brown, C. T., Anantharaman, K., Tringe, S., Hettich, R. L., Harrison, S. T., & Banfield, J. F. (2017). Genome-resolved meta-omics ties microbial dynamics to process performance in biotechnology for thiocyanate degradation. Environmental science & technology, 51(5), 2944-2953.
Kleindienst, S., Herbst, F.-A., Stagars, M., Von Netzer, F., Von Bergen, M., Seifert, J., Peplies, J., Amann, R., Musat, F., & Lueders, T. (2014). Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. The ISME journal, 8(10), 2029-2044.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research, 41(1), e1-e1.
Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lücker, S., Pelletier, E., Le Paslier, D., Spieck, E., & Richter, A. (2014). Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science, 345(6200), 1052-1054.
Kompantseva, E. I., Kublanov, I. V., Perevalova, A. A., Chernyh, N. A., Toshchakov, S. V., Litti, Y. V., Antipov, A. N., Bonch-Osmolovskaya, E. A., & Miroshnichenko, M. L. (2017). Calorithrix insularis gen. nov., sp. nov., a novel representative of the phylum Calditrichaeota. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1486-1490.
Kop, L. F., Koch, H., Jetten, M. S., Daims, H., & Lücker, S. (2024). Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME communications, 4(1), ycad017.
Kowalchuk, G. A., & Stephen, J. R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Reviews in Microbiology, 55(1), 485-529.
Kruse, M., Zumbrägel, S., Bakker, E., Spieck, E., Eggers, T., & Lipski, A. (2013). The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing. Systematic and Applied Microbiology, 36(7), 517-524.
Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263-276. https://doi.org/10.1038/nrmicro.2018.9
LaPara, T. M., Nakatsu, C. H., Pantea, L. M., & Alleman, J. E. (2002). Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water research, 36(3), 638-646.
Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review. Water research, 40(20), 3671-3682.
Li, D., Yan, S., Yong, X., Zhang, X., & Zhou, J. (2023). Ball-milled magnetic sludge biochar enables fast aerobic granulation in anoxic/oxic process for the treatment of coal chemical wastewater. Science of The Total Environment, 880, 163241.
Li, G., Puyol, D., Carvajal‐Arroyo, J. M., Sierra‐Alvarez, R., & Field, J. A. (2015). Inhibition of anaerobic ammonium oxidation by heavy metals. Journal of Chemical Technology & Biotechnology, 90(5), 830-837.
Li, S., Dai, M., Wu, Y., Fu, H., Hou, X., Peng, C., & Luo, H. (2022). Resource utilization of electroplating wastewater: obstacles and solutions. Environmental Science: Water Research & Technology, 8(3), 484-509.
Li, X., Zhang, L., Yang, Z., Wang, P., Yan, Y., & Ran, J. (2020). Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Separation and Purification Technology, 235, 116213.
Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulfate reduction. Biotechnology advances, 25(5), 452-463.
Liao, K., Ma, S., Liu, C., Hu, H., Wang, J., Wu, B., & Ren, H. (2022). High concentrations of dissolved organic nitrogen and N-nitrosodimethylamine precursors in effluent from biological nutrient removal process with low dissolved oxygen conditions. Water research, 216, 118336.
Libralato, G., Ghirardini, A. V., & Avezzù, F. (2010). Seawater ecotoxicity of monoethanolamine, diethanolamine and triethanolamine. Journal of Hazardous Materials, 176(1-3), 535-539.
Lim, E.-T., Jeong, G.-T., Bhang, S.-H., Park, S.-H., & Park, D.-H. (2009). Evaluation of pilot-scale modified A2O processes for the removal of nitrogen compounds from sewage. Bioresource technology, 100(24), 6149-6154.
Liu, B., Yan, D., Wang, Q., Li, S., Yang, S., & Wu, W. (2009). Feasibility of a two-stage biological aerated filter for depth processing of electroplating-wastewater. Bioresource technology, 100(17), 3891-3896.
Liu, W., Song, X., Na, Z., Li, G., & Luo, W. (2022). Strategies to enhance micropollutant removal from wastewater by membrane bioreactors: Recent advances and future perspectives. Bioresource technology, 344, 126322.
Lu, H., & Chandran, K. (2010). Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnology and bioengineering, 106(3), 390-398.
Lu, H., Chandran, K., & Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water research, 64, 237-254.
Lu, Z., Li, Z., Cheng, X., Xie, J., Li, X., Jiang, X., & Zhu, D. (2023). Treatment of nitrogen-rich wastewater by mixed aeration combined with bioaugmentation in a sequencing batch biofilm reactor: Biofilm formation and nitrogen-removal capacity analysis. Journal of Environmental Chemical Engineering, 11(2), 109316.
Luo, H., Song, Y., Zhou, Y., Yang, L., & Zhao, Y. (2017). Effects of rapid temperature rising on nitrogen removal and microbial community variation of anoxic/aerobic process for ABS resin wastewater treatment. Environmental Science and Pollution Research, 24, 5509-5520.
Ma, Y., Peng, Y., Wang, S., Yuan, Z., & Wang, X. (2009). Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. Water research, 43(3), 563-572.
Mahto, K. U., & Das, S. (2022). Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. Bioresource technology, 345, 126476.
Maniam, K. K., & Paul, S. (2020). Progress in electrodeposition of zinc and zinc nickel alloys using ionic liquids. Applied Sciences, 10(15), 5321.
Mao, Y., Zhang, X., Xia, X., Zhong, H., & Zhao, L. (2010). Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor. Journal of Industrial Microbiology and Biotechnology, 37(9), 927-934.
Martineau, C., Villeneuve, C., Mauffrey, F., & Villemur, R. (2013). Hyphomicrobium nitrativorans sp. nov., isolated from the biofilm of a methanol-fed denitrification system treating seawater at the Montreal Biodome. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_10), 3777-3781.
McIlroy, S. J., Albertsen, M., Andresen, E. K., Saunders, A. M., Kristiansen, R., Stokholm-Bjerregaard, M., Nielsen, K. L., & Nielsen, P. H. (2014). ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. The ISME journal, 8(3), 613-624.
Medhi, K., & Thakur, I. S. (2018). Bioremoval of nutrients from wastewater by a denitrifier Paracoccus denitrificans ISTOD1. Bioresource Technology Reports, 1, 56-60.
Mijatovic, S., & Gadda, G. (2008). Oxidation of alkyl nitronates catalyzed by 2-nitropropane dioxygenase from Hansenula mrakii. Archives of Biochemistry and Biophysics, 473(1), 61-68. https://doi.org/https://doi.org/10.1016/j.abb.2008.02.029
Morgan-Sagastume, F., Nielsen, J. L., & Nielsen, P. H. (2008). Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge. FEMS microbiology ecology, 66(2), 447-461.
Nielsen, P. H. (2017). Microbial biotechnology and circular economy in wastewater treatment. Microbial Biotechnology, 10(5), 1102-1105.
Oh, J., & Silverstein, J. (1999). Oxygen inhibition of activated sludge denitrification. Water research, 33(8), 1925-1937.
Palatinszky, M., Herbold, C., Jehmlich, N., Pogoda, M., Han, P., von Bergen, M., Lagkouvardos, I., Karst, S. M., Galushko, A., & Koch, H. (2015). Cyanate as an energy source for nitrifiers. Nature, 524(7563), 105-108.
Pan, K.-L., Gao, J.-F., Li, H.-Y., Fan, X.-Y., Li, D.-C., & Jiang, H. (2018). Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing. Bioresource technology, 256, 152-159.
Pan, Y., Ye, L., & Yuan, Z. (2013). Effect of H2S on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Environmental science & technology, 47(15), 8408-8415.
Pandey, C., Kumar, U., Kaviraj, M., Minick, K., Mishra, A., & Singh, J. (2020). DNRA: a short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Science of The Total Environment, 738, 139710.
Peng, Y., Wang, X., Wu, W., Li, J., & Fan, J. (2006). Optimisation of anaerobic/anoxic/oxic process to improve performance and reduce operating costs. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(8), 1391-1397.
Pinto, A., Marcus, D., Ijaz, U., Bautista-de Lose Santos, Q., Dick, G., & Raskin, L. (2016). Metagenomic evidence for the presence of comammox. In: Nitrospira.
Poisson, A. (1980). Conductivity/salinity/temperature relationship of diluted and concentrated standard seawater. IEEE Journal of Oceanic Engineering, 5(1), 41-50.
Priyadarshini, M., Das, I., Ghangrekar, M. M., & Blaney, L. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 316, 115295.
Qiu, G., & Ting, Y.-P. (2013). Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics. Bioresource technology, 150, 287-297.
Rajoria, S., Vashishtha, M., & Sangal, V. K. (2022). Treatment of electroplating industry wastewater: a review on the various techniques. Environmental Science and Pollution Research, 29(48), 72196-72246.
Rajoria, S., Vashishtha, M., & Sangal, V. K. (2022). Treatment of electroplating industry wastewater: a review on the various techniques. Environ Sci Pollut Res Int, 29(48), 72196-72246. https://doi.org/10.1007/s11356-022-18643-y
Randall, C., & Buth, D. (1984). Nitrite build-up in activated sludge resulting from temperature effects. Journal (Water Pollution Control Federation), 1039-1044.
Robertson, G. P., & Groffman, P. (2024). Nitrogen transformations. In Soil microbiology, ecology and biochemistry (pp. 407-438). Elsevier.
Rubio-Rincón, F., Lopez-Vazquez, C., Welles, L., Van Loosdrecht, M., & Brdjanovic, D. (2017). Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. Water research, 120, 156-164.
Ruiz, G., Jeison, D., Rubilar, O., Ciudad, G., & Chamy, R. (2006). Nitrification–denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresource technology, 97(2), 330-335.
Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B., & Sloth, N. P. (1999). Effects of salinity on NH 4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries, 22, 21-30.
Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nat. Sci, 17(1), 34-40.
Shao, Y.-H., & Wu, J.-H. (2021). Comammox nitrospira species dominate in an efficient partial nitrification–anammox bioreactor for treating ammonium at low loadings. Environmental science & technology, 55(3), 2087-2098.
Sharma, P., Dutta, D., Udayan, A., Nadda, A. K., Lam, S. S., & Kumar, S. (2022). Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. Environmental Pollution, 119248.
Siddiqui, M. A., Biswal, B. K., Siriweera, B., Chen, G., & Wu, D. (2022). Integrated self-forming dynamic membrane (SFDM) and membrane-aerated biofilm reactor (MABR) system enhanced single-stage autotrophic nitrogen removal. Bioresource technology, 345, 126554.
Sorokin, D. Y., Lücker, S., Vejmelkova, D., Kostrikina, N. A., Kleerebezem, R., Rijpstra, W. I. C., Damsté, J. S. S., Le Paslier, D., Muyzer, G., & Wagner, M. (2012). Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. The ISME journal, 6(12), 2245-2256.
Speranza, G., Morelli, C. F., Cairoli, P., Müller, B., & Schink, B. (2006). Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium. Biochemical and Biophysical Research Communications, 349(2), 480-484.
Stewart, V., Bledsoe, P. J., Chen, L.-L., & Cai, A. (2009). Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. Journal of bacteriology, 191(3), 996-1005.
Su, Z., Liu, T., Guo, J., & Zheng, M. (2023). Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges. Environmental science & technology, 57(34), 12557-12570.
Tang, G., Zheng, X., Li, X., Liu, T., Wang, Y., Ma, Y., Ji, Y., Qiu, X., Wan, Y., & Pan, B. (2020). Variation of effluent organic matter (EfOM) during anaerobic/anoxic/oxic (A2O) wastewater treatment processes. Water research, 178, 115830. https://doi.org/https://doi.org/10.1016/j.watres.2020.115830
Van Den Brand, T. P., Roest, K., Chen, G., Brdjanovic, D., & Van Loosdrecht, M. (2015). Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World Journal of Microbiology and Biotechnology, 31, 507-516.
Van Kessel, M. A., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J., Kartal, B., Jetten, M. S., & Lücker, S. (2015). Complete nitrification by a single microorganism. Nature, 528(7583), 555-559.
Wang, X., Wu, Y., Chen, N., Piao, H., Sun, D., Ratnaweera, H., Maletskyi, Z., & Bi, X. (2022). Characterization of Oxidation-Reduction Potential Variations in Biological Wastewater Treatment Processes: A Study from Mechanism to Application. Processes, 10(12), 2607.
Wang, Z., Liu, L., Guo, F., & Zhang, T. (2015). Deciphering cyanide-degrading potential of bacterial community associated with the coking wastewater treatment plant with a novel draft genome. Microbial ecology, 70, 701-709.
Wang, Z., Xu, X., Gong, Z., & Yang, F. (2012). Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system. Journal of Hazardous Materials, 235, 78-84.
Watson, S. (1989). Nitrifying bacteria. Bergey's manual of systematic bacteriology, 3, 1808-1834.
West, R. J., & Gonsior, S. J. (1996). Biodegradation of triethanolamine. Environmental Toxicology and Chemistry: An International Journal, 15(4), 472-480.
Wu, X., Wang, C., Wang, D., Huang, Y.-X., Yuan, S., & Meng, F. (2022). Simultaneous methanogenesis and denitrification coupled with nitrifying biofilm for high-strength wastewater treatment: Performance and microbial mechanisms. Water research, 225, 119163.
Wu, Y.-J., Irmayani, L., Setiyawan, A. A., & Whang, L.-M. (2020). Aerobic degradation of high tetramethylammonium hydroxide (TMAH) and its impacts on nitrification and microbial community. Chemosphere, 258, 127146.
Xia, Z., Wang, Q., She, Z., Gao, M., Zhao, Y., Guo, L., & Jin, C. (2019). Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Science of The Total Environment, 697, 134047.
Yan, X., Zhu, C., Huang, B., Yan, Q., & Zhang, G. (2018). Enhanced nitrogen removal from electroplating tail wastewater through two-staged anoxic-oxic (A/O) process. Bioresource technology, 247, 157-164.
Yang, F., Wang, S., Li, H., Wang, G., Wang, Y., Yang, J., Chen, Y., Yan, P., Guo, J., & Fang, F. (2023). Differences in responses of activated sludge to nutrients-poor wastewater: Function, stability, and microbial community. Chemical Engineering Journal, 457, 141247.
Yoshie, S., Makino, H., Hirosawa, H., Shirotani, K., Tsuneda, S., & Hirata, A. (2006). Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater. Applied Microbiology and Biotechnology, 72, 182-189.
Zeng, W., Li, L., Yang, Y., Wang, S., & Peng, Y. (2010). Nitritation and denitritation of domestic wastewater using a continuous anaerobic–anoxic–aerobic (A2O) process at ambient temperatures. Bioresource technology, 101(21), 8074-8082.
Zhang, H., Ma, B., Huang, T., Yang, W., Liu, X., & Niu, L. (2022). Nitrogen removal from low carbon/nitrogen polluted water is enhanced by a novel synthetic micro-ecosystem under aerobic conditions: Novel insight into abundance of denitrification genes and community interactions. Bioresource technology, 351, 127013.
Zhang, L., Cheng, J., Yang, Y.-s., Wen, Y.-h., Wang, X.-d., & Cao, G.-p. (2008). Study of zinc electrodes for single flow zinc/nickel battery application. Journal of Power Sources, 179(1), 381-387.
Zhang, Q., Cheng, Y.-F., Huang, B.-C., & Jin, R.-C. (2022). A review of heavy metals inhibitory effects in the process of anaerobic ammonium oxidation. Journal of Hazardous Materials, 128362.
Zhang, S., Zhang, Z., Xia, S., Ding, N., Liao, X., Yang, R., Chen, M., & Chen, S. (2021). The potential contributions to organic carbon utilization in a stable acetate-fed Anammox process under low nitrogen-loading rates. Science of The Total Environment, 784, 147150.
Zhang, Y., Zhang, J., Yu, D., Li, J., Zhao, X., Ma, G., Zhi, J., Dong, G., & Miao, Y. (2023). Migration of microorganisms between nitrification–denitrification flocs, anammox biofilms and blank carriers during mainstream anammox start-up. Bioresource technology, 130129.
Zhang, Y., Zhang, J., Yu, D., Li, J., Zhao, X., Ma, G., Zhi, J., Dong, G., & Miao, Y. (2024). Migration of microorganisms between nitrification–denitrification flocs, anammox biofilms and blank carriers during mainstream anammox start-up. Bioresource technology, 393, 130129.
Zhang, Z., Yu, Y., Xi, H., & Zhou, Y. (2021). Review of micro-aeration hydrolysis acidification for the pretreatment of toxic and refractory organic wastewater. Journal of Cleaner Production, 317, 128343.
Zhang, Z., Zhang, C., Yang, Y., Zhang, Z., Tang, Y., Su, P., & Lin, Z. (2022). A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. Journal of Cleaner Production, 134109.
Zou, J., Zhang, K., Wang, S., Li, M., Wang, Z., Wang, S., Li, Y., Deng, Y., Li, X., & Wang, D. (2023). The elevation of salinity above 1% deteriorated nitrification performance and reshaped nitrifier community of an MBR: An often overlooked factor in the treatment of high-strength ammonium wastewater. Chemosphere, 139072.
Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and molecular biology reviews, 61(4), 533-616.
校內:2029-06-18公開