簡易檢索 / 詳目顯示

研究生: 林德洪
Lin, Te-Hung
論文名稱: 沉箱式碼頭動態模型試驗之數值模擬及模型設計
Numerical Analysis and Model Design for Dynamic Model Test of Caisson Type Quay Walls
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 94
中文關鍵詞: 沉箱式碼頭動態數值模擬土壤-結構互制動態模型試驗
外文關鍵詞: Caisson type quay walls, Dynamic numerical simulation, Soil-structure interaction, Dynamic model test
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合簡化分析與動態土壤-結構互制數值模擬,探討沉箱式碼頭模型在動態模型試驗中之反應,以利沉箱式碼頭之動態模型試驗之模型設計。研究以動態數值模擬探討沉箱式碼頭模型之破壞模式、超額孔隙水壓分佈及土壓力分佈,並探討沉箱底部礫石層對沉箱模型耐震能力及破壞模式之影響。動態數值模擬結果顯示沉箱式碼頭模型破壞模式與過去文獻之研究相符合,沉箱底部有礫石層之沉箱模型在受震時因為背填土壤液化發生向海側的位移與傾倒破壞,沉箱底部無礫石層之沉箱模型在受震時在背填土壤發生液化前即因為沉箱底部砂土之承載力不足而發生向海側之位移與傾倒破壞。數值模擬結果與簡化分析比較發現,簡化分析因未考慮土壤液化造成之位移,位移量小於動態模擬分析結果,因此考慮液化狀態下沉箱需以動態數值模擬才能得到較為精確之位移量。

    Simplified analyses and dynamic soil-structure simulations with pore pressure generation are performed to study the seismic responses of caisson type quay walls. The results are implemented to design the details of physical modeling for shaking table tests with soil liquefaction based on the failure modes, spatial variation of excess pore water pressure, and earth pressures along the soil-structure interfaces. The numerical procedure is further extended to evaluate the effects of the rubble base on seismic responses of caisson. The failure modes of the numerical results are similar to published cases. A caisson with rubble base will induce lateral displacement and tilting toward the sea side due to liquefied backfill. Bearing capacity failure will induce for caisson without rubble base. Comparisons between the simplified analyses and numerical simulations indicate that simplified analyses will underestimate the lateral displacements in liquefied cases due to the incapability of taking into account the liquefied conditions. Consequently, numerical simulation is recommended for evaluating the displacement responses of caisson due to seismic loadings and soil liquefaction.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究方法與流程 3 1-4 論文架構 4 第二章 文獻回顧 6 2-1 土壤液化 6 2-2 沉箱碼頭破壞模式與破壞案例 6 2-3 土壤液化對沉箱式碼頭之影響 10 2-4 擬靜態分析 10 2-5 沉箱式碼頭動態模型試驗 13 2-6 沉箱式碼頭數值模擬 17 第三章 沉箱模型耐震性能分析 21 3-1 簡化分析法 21 3-1-1 滑動穩定分析 21 3-1-2 傾覆穩定分析 27 3-1-3 基礎承載穩定性分析 28 3-2 簡化動力分析法 30 3-2-1 滑動塊體分析法(sliding block analysis) 31 3-2-2 簡化圖表分析(simplified chart based on parametric study) 33 3-3 沉箱模型擬靜態分析 36 3-3-1. 簡化分析法 38 3-3-2. 簡化動力分析 39 第四章 動態數值模擬 42 4-1 FLAC程式基本介紹 43 4-2 FLAC動態分析介紹 44 4-2-1 力學阻尼(Mechanical Damping) 44 4-2-2 吸能邊界 46 4-2-3 動態邊界條件 46 4-2-4 動水壓力(Hydrodynamic pressure) 47 4-2-5 超額孔隙水壓力激發模式 48 4-3 分析流程 49 4-4 數值分析模型 52 4-5 沉箱模型數值分析結果 58 4-5-1 動態邊界與監測點 58 4-5-2 加速度位移與孔隙水壓力歷時變化 58 4-5-3 土壤結構互制 61 4-5-4 數值分析與文獻比較 63 第五章 動態模擬分析結果比較 66 5-1 破壞模式之比較 66 5-2 超額孔隙水壓激發比較 70 5-3 土壓力之比較 74 5-4 剪力模數變化之影響 76 5-5 邊界效應之影響 80 第六章 沉箱實體模型設計 82 6-1 沉箱實體模型 82 6-2 實體模型與數值模型破壞比較 85 第七章 結論與建議 88 7-1 結論 88 7-2 建議 89 參考文獻 90

    交通部運研所(1996),”港灣工程專有名詞”。
    交通部運研所(1999),” 臺中港1至4A碼頭921地震液化災損初步調查研究”,專刊172。
    交通部運研所(2005),”港灣構造物設計基準修訂”
    交通部運研所(2007),”液化對港灣構造物穩定性之影響研究(2/4)”,ISBN:978-986-00-9221-9
    交通部運研所(2012),”港區碼頭構造物動態模型試驗與數值模擬之研究(2/4)”,ISBN:978-986-03-1807-4
    吳珮如,"以動態模型試驗探討液化土層中錨碇版樁之反應”,國立成功大學土木工程學系研究所,碩士論文,2012。
    李佳翰,”沉箱碼頭受震引致土壤液化之數值模擬”,國立中央大學應用地質研究所,碩士論文,2001。
    翁作新、王明輝、陳銘鴻、何文欽(2001),“大型振動台剪力盒土壤液化試驗(I) ─大型二維剪力盒之研發”,報告編號:NCREE-01-011。
    翁作新、陳家漢、彭立先、李偉誠(2003),“大型振動台剪力盒土壤液化試驗(II)─大型砂試體之準備與振動台初期試驗”,報告編號:NCREE-03-042。
    黃國祥,滑動塊體分析法及其應用在港灣重力式擋土牆之研究,國立台灣大學土木工程學系研究所博士論文,臺北,2002。
    國家地震工程研究中心 (2000), “921集集大地震大地工程災害調查報告”。
    Amano, R., Azuma, H. & Ishii, Y. (1956), “Aseismic design of walls in Japan”, Proceeding of 1st World Conference on Earthquake Engineering, pp.32-1~32-17 , San Francisco.
    Byrne, P. M.(1991) “A Cyclic Shear-Volume Coupling and Pore-Pressure Model for Sand,” Proceedings of Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Paper No. 1.24, 47-55, 1991, St. Louis, Missouri, March 1991.
    Chang, W. J., Ueng, T. Z., Chan, C. H., and Yang, C. W. (2010), “Embedded Sensor for Measurements of Coupled Responses of Soil in Shaking Table Test”, Soils and Foundations, Vol. 50/2, pp. 325-334.
    Chang, W. J., Chen, J.F., Ho, H.C., and Chiu, Y. F. (2010), “In Situ Dynamic Model Test for Pile-supported Wharf in Liquefied Sand “, ASTM Geotechnical Testing Journal, Vol. 33/3.
    Dakoulas, P. & Gazetas, G. (2005a), “Effective stress analysis of caisson quay walls: application to Kobe” Soils and Foundations. Vol. 45, No. 4, 133–147.
    Ebeling, R. M., and Morrison, E. E.(1992), “The Seismic Design of Waterfront Retaining Structures,” U.S. Army Corps of Engineers, Technical Report ITL-92-11/NCEL TR-939.
    Finn, W. D. L. Lee, M. K. W. Martin, G. R. (1977), “An effective stress model for liquefaction”, J. Geotech. Eng. ASCE 103, 517~533.
    FLAC (2008), “Fast Lagrangian Analysis of Continua, Version 6.0, User’s Guide”, Itasca Consulting Group Inc., USA.
    Hardin, B. O., and V. P. Drnevich. (1972), “Shear Modulus and Damping in Soils: I. Measurement and Parameter Effects, II. Design Equations and Curves,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98, No. 6, pp. 603~624 and No. 7, pp. 667~691
    Iai, S., Ichii, K., Liu, H., and Morita, T. (1998), “Effective Stress Analyses of Port Structures,” Soils and Foundations, Special Issue on Geotechnical Aspects of the January 17,1995 Hyogoken-Nambu Earthquake, (2), pp.97~114.
    Iai, S., Ichii, K., Sato, Y. & Liu, H. (1999). “Residual displacement of gravity quay walls –parameter study through effective stress analysis”, Proc. 7th U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, MCEER-99-0019, pp. 549–563, Seattle, Washington, August 15-17,1999.
    Iai, S., and Sugano, T. (2000). “Shake table testing on seismic performance of gravity quay walls.” Proceedings of 12th World Conf. on Earthquake Engineering (WCEE) CD-ROM, Paper No. 2680.
    International Navigation Association, INA(2001), “Seismic Design Guidelines for port structures.”
    Inagaki, H., Iai, S., Sugano, T., Yamazaki, H., and Inatomi, T. (1996), ”Performance of Caisson type quay walls at Kobe Port.”, Soils Foundation, Special Issue on Geotechnical Aspects of the January 17 1995 Hyogoken-Nambu earthquake, Japanese Geotechnical Society, pp.119~136.
    Inoue, K., Miura, K., Otsuka, N., Yoshida, N. & Sasajima, T. (2003). “Numerical analysis of the earth pressure during earthquake on the gravity type quay wall. “ Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, pp.2095-2209, International Society of Offshore and Polar Engineers, Honolulu, HI, United States, May 25-30, 2003.
    Ishibashi, I., and Madi, L. (1990). “Case Studies of Quay walls Stability with Liquefied Backfills,” Proceeding of the 4th U.S. National Conference on Earthquake Engineering, Vol.3, pp.725-735.
    Lysmer, J. and Kuhlemeyer, R. L. (1969), ‘‘Finite dynamic model for infinite media,’’ J. Eng. Mech. Div., 95(EM4), pp.859–877.
    Martin, G. R.,W. D. L. Finn and H. B. Seed. (1975), “Fundamentals of Liquefaction under Cyclic Loading,” J. Geotech., Div. ASCE, 101(GT5), pp.423-438.
    Mito M, Sugano T, Inatomi T, Inagaki H. (1996), “Experimental studies on the caisson type quay wall damaged by Hyogoken-Nanbu earthquake 1995.” Proceedings of 11th WCEE, 1996.
    Miura, K., Kohama, E., Inoue, K., Ohtsuka, N., Sasajima, T. and Yoshida, N. (2000). "Behavior of Gravity Type Quay Wall during Earthquake Regarding Dynamic Interaction between Caisson and Backfill during Liquefaction," Proc. of 12th World Conference on Earthquake Engineering, Vol.7, PaperNo.1737
    Mononobe, N., and Matsuo, M. (1929), “On the Determination of Earth Pressures during Earthquakes,” Proceeding of the World Engineering Congress, Tokyo, Vol.9, pp.177-185.
    Newmark, N. M., (1965), “Effect of Earthquake on Dam and Embankment”, Geotechnique, Vol.15, No. 2, pp.139-159.
    Noda, S., Uwabe, T. & Chiba. T. (1975). “Relation between seismic coefficient and ground acceleration for gravity quay wall”, Report of Port and Harbour Research Institute 14(4), pp.67–111
    Okabe, S. (1926), “General Theory of Earth Pressures,” Japan Society of Civil Engineers, Vol.12, No.1.
    Richards, R. Jr. and Elms, D. (1979), “Seismic Behavior of Gravity Retaining Walls,” Journal of Geotechnical Engineering Division, ASCE, Vol.105(GT4), pp.449-464,1979.
    Seed, H.B., Tokimatsu, K., Harder, L. F., Chung, R. M.(1984). “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Earthquake Engineering Research Center Report No. UCB/EERC-84/115, University of California at Berkley, October, 1984.
    Werner, S. D. (1998), “Seismic Guideline for Port Structures,” Technical Council on Lifeline Earthquake Engineering, ASCE, Monograph No.12.
    Westergaard, H. M. (1933), “Water Pressures on Dams during Earthquakes,” Trans. ASCE, Vol.98, pp.418-432.

    下載圖示 校內:2016-01-01公開
    校外:2016-01-01公開
    QR CODE