| 研究生: |
連怡華 Lian, Yi-Hua |
|---|---|
| 論文名稱: |
LQR控制結合系統識別應用於結構物地震反應之研究 Research on LQR control combined with system identification applied to the seismic response of structures |
| 指導教授: |
朱聖浩
Ju, Shen-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 系統識別 、線性二次調節器 、Riccati方程 、有限元素模型 、最優線性控制 |
| 外文關鍵詞: | System identification, Linear quadratic regulator, Riccati equation, Finite element model, Optimal linear control |
| 相關次數: | 點閱:116 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在利用遞迴子空間之系統識別方法以及二次線性調節器(LQR控制器)應用到結構物受到地震的反應。建立有限元模型並透過電腦輔助分析程式獲取結構物上加速度反應歷時資料來得到系統參數,將已知的結構質量矩陣以及結構參數推估勁度矩陣,再由LQR控制器進一步控制結構位移以及速度反應,並由控制前後的結果來討論此方法的有效性。
本研究將不同自由度大小以及不同情況的有限元模型施加人工地震,進行每一時間步的遞迴子空間識別,並將識別結果分別與有限元模型計算的結果以及降階的狀態空間方程推算的結果做比較,藉此了解此系統識別方法的準確性。一旦有了結構參數並決定LQR控制的權重矩陣大小後,就能計算出在結構物上要額外施加的力大小,透過結構物最頂層上的一組LQR控制器給予控制力達到降低結構反應的效果。此外,本文亦施加不同最大地表加速度(PGA)以及不同主要頻率(Ts)的人工地震於模型,並在結構物上安裝兩組控制器,了解此控制方法對於不同地震情況下的適用性,也討論了不同數量控制器的有效性。
由研究分析結果來看,LQR控制方法在各種不同建築結構以及在不同地震激勵下的結構都能有良好的控制結果,且僅一組控制器就有不錯的控制能力。而系統識別應用在大部分結構物也都能良好的識別結構參數。電腦輔助分析程式由朱聖浩教授研究團隊所開發,分析程式以及研究成果皆為公開資源。
This paper aims to apply the recursive subspace system identification (RSI) method and the linear quadratic regulator (LQR) to the finite element model under seismic excitation. The acceleration response time data on the structure is obtained through the computer-aided analysis program, thereby obtaining the system parameters. Then the LQR controller further controls the structure response and discusses the effectiveness of the LQR method.
In this research, artificial earthquakes are applied to structures under different conditions. The RSI method is performed at each time step, and the recognition results are compared with the calculation results of the finite element model and the reduced-order state space equation to understand the accuracy of the system recognition method. After obtaining the structural parameters and determining the weighting matrix of the LQR control, the control force can be calculated. The force given by the LQR controller at the top of the structure can reduce the response of the structure. In addition, this paper also applies artificial earthquakes with different PGA and different main periods to the model to understand the applicability of the control method to different earthquake situations.
According to the research and analysis results, the LQR control method has a good control effect when applied to various building structures. System identification can also identify most structural parameters well. The computer-aided analysis programs are developed by Shen-Haw Ju’s research team, which are open source.
Alavinasab, A., and Moharrami, H. (2006) Active Control of Structures Using Energy-Based LQR Method. Computer-Aided Civil and Infrastructure Engineering, 21, 605–611.
Aldemir, U., Yanik, A., and Bakioglu, M. (2012). Control of Structural Response Under Earthquake Excitation. Computer-Aided Civil and Infrastructure Engineering, 27(8), 620-638.
Alexandrova, M., Atanasov, N., Grigorov, I., and Zlateva, I. (2017). Linear Quadratic Regulator Procedure and Symmetric Root Locus Relationship Analysis. International Journal of Engineering Research & Science, 3(11), 27-33.
Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and Varga, A. (1999). SLICOT-A Subroutine Library in Systems and Control Theory. Applied and Computational Control, Signals, and Circuits (Birkhauser), 1(10), 505-546.
Choi, K. M., Cho, S. W., Kim, D. O., and Lee., I. W. (2005). Active control for seismic response reduction using modal-fuzzy approach. International Journal of Solids and Structures, 42, 4779-4794.
Cong, C. (2018). Decentralized control of vibrations in wind turbines using multiple active tuned mass dampers with stroke constraint. Advances in Mechanical Engineering, 10(12), 1–12.
Forsythe, G. E., Malcolm, M. A., and Moler, C. B. (1977) Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ.
Fitzgerald, B., Sarkar, S., and Staino, A. (2018). Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs). Journal of Sound and Vibration, 419, 103–122.
Goel, G., and Hassibi, B. (2020). The power of linear controllers in LQR control. Proceedings of Machine Learning Research, TBD:1–13.
Ghaderi, P., and Goshtaei, S. M. (2020). Smart vibration control of structures with unknown structural parameters using integrated virtual synchronization method/linear-quadratic regulator approach. Advanced Control for Applications: Engineering and Industrial Systems, 2(3), e48.
Heidari, A. H., Etedali, S., and Javaheri-Tafti, M. R. (2018). A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD. Frontiers of Structural and Civil Engineering, 12(1), 44-57.
IBC. (2006). International Building Code 2006; International Code Council: Birmingham, AL, USA.
Kori, J. G., and Jangid, R. S. (2007). Semi-active Stiffness Dampers for Seismic Control of Structures. Advances in Structural Engineering, 10(5), 501-524.
Kurata, N., Kobori, T., Takahashi, M., Niwa, N., and Midorikawa, H. (1999). Actual seismic response controlled building with semi-active damper system. Earthquake engineering and structural dynamics, 28(11), 1427-1447.
Laub, A. (1978). A Schur method for solving algebraic Riccati equations. IEEE Transactions on Automatic Control, AC-24(6), 913-921.
Lin, G. L., Lin, C. C., Chen, B. C., and Soong, T. T. (2015). Vibration control performance of tuned mass dampers with resettable variable stiffness. Engineering Structures, 83, 187–197.
MIT. SIMQKE. (1976). A Program for Artificial Motion Generation: User’s Manual and Documentation. M.I.T. Department of Civil Engineering.
Miyamoto, K., Sato, D., and She, J. (2018). A new performance index of LQR for combination of passive base isolation and active structural control. Engineering Structures, 157, 280–299.
Robandi, I., Nishimori, K., Nishimura, R., and Ishihara, N. (2001). Optimal feedback control design using genetic algorithm in multi-machine power system. Electrical Power and Energy Systems, 23, 263-271.
Soong, T. T., and Spencer, B. F. (2000). Active, semi-active and hybrid control of structures. Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 387-402.
Stewart, G. M., and Lackner, M. A. (2011). The effect of actuator dynamics on active structural control of offshore wind turbines. Engineering Structures, 33, 1807-1816.
Sareban, M. (2017). Evaluation of Three Common Algorithms for Structure Active Control. Engineering, Technology & Applied Science Research, 7(3), 1638-1646.
Sareban, M., Aminian, P., and Karimpour, B. (2017). Uncertainty of stiffness in common active control algorithms for structures. Advances and Applications in Mathematical Sciences, 16(12), 381-408.
Van Huffel, S., Sima, V., Varga, A., Hammarling, S., and Delebecque, F. (2004). High-Performance Numerical Software for Control. IEEE Control Systems Magazine, 24(1), 60-76.
Wu, J. C., Yang, J. N., and Schmitendorf, W. E. (1998). Reduced-order H∞ and LQR control for wind-excited tall buildings. Engineering Structures, 20(3), 222-236.
Wong, K., and Yang, R. (2001). Evaluation of response and energy in actively controlled structures. Earthquake Engineering and Structural Dynamics, 30(10), 1495-1510.
Wise, S., and Leventhall, G. (2010). Active noise control as a solution to low frequency noise problems. Journal of Low Frequency Noise Vibration and Active Control, 29(2), 129-138.
Xie, F., and Aly, A. M. (2020). Structural control and vibration issues in wind turbines: A review. Engineering Structures, 210, 110087.
Yanik, A., Aldemir, U., and Bakioglu, M. (2011). Energy-Based Evalation of Seismic Response of Structures with Passive and Active Systems. WIT Transactions on State of the Art in Science and Engineering, 59, 99-110.
Yanik, A. (2019). Absolute Instantaneous Optimal Control Performance Index for Active Vibration Control of Structures under Seismic Excitation. Shock and Vibration, 2019, 4207427.
Yanik, A. and Aldemir, U. (2019). A simple structural control model for earthquake excited structures. Engineering Structures, 182, 79-88.
Zelleke, D. H., and Matsagar, V. A. (2019). Semi-active algorithm for energy-based predictive structural control using tuned mass dampers. Computer‐Aided Civil and Infrastructure Engineering, 34(11), 1010-1025.
劉豹,現代控制理論,台北市科技圖書股份有限公司,1992年2月
最優控制綜述-變分法到最小值定理到動態規劃到LQR. 檢自 https://zhuanlan.zhihu.com/p/120331319 (March 29, 2020)