| 研究生: |
蕭人瑄 HSIAO, JEN-HSUAN |
|---|---|
| 論文名稱: |
鋰離子二次電池鎂-鎳-碳負極材料微觀組織與充放電特性研究 A Study on Microstructures and Charge-Discharge Characteristics of Mg-Ni-C Anode Materials for Lithium-Ion Rechargeable Batteries |
| 指導教授: |
洪飛義
Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 鎂粉 、鋰電池 、充放電 |
| 外文關鍵詞: | Mg powders, Lithium battery, Charge-Discharge |
| 相關次數: | 點閱:85 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相較於現行廣泛使用之商用碳材,Mg作為鋰離子二次電池之負極具有高電容量優勢,但因Mg活性高、安全性不佳,且於多數次充放電後因體積膨脹,造成電池壽命不佳,故需添加其他元素以增加電池之循環能力,如:Ni、C、Sb,其中Ni具有與鋰不反應之性質,能夠減緩Mg之反應性,另外C成本低廉與易取得,這兩種材料添加進入Mg基系統中將可成為現今極具潛力之負極材料。
本實驗同時採用鍍膜與粉末電極製備Mg基電極極片,並討論各種極片之顯微組織與充放電特性及電化學性質。實驗結果顯示,Mg-C系統因有界面效應能減緩反應活性,組成上隨著增加C之比例,在初期充放電能有較佳表現;另外,添加Ni粉與Ni膜確實能達到降低反應活性,使得電池效能更趨穩定,該粉末於常溫特性並無顯著改善,然而於高溫(55度C)充放電測試中則具優異性能,其充放循環電容量顯著提升。此外,粉末電極循環充放電後之組織特徵和高溫電解液離子溶出行為亦被調查,可證實Mg-Ni粉末電極之電化學特性對高溫循環性有正面助益。
Compared to widely used graphite anode material for lithium-ion rechargeable batteries, Mg can replace it because of its high capacity. However, Mg has several disadvantages, such as high activity, low safety, and volume expansion caused by repeated charge-discharge cycles will reduce cycle performance of batteries. So it must add other elements to raise cyclability, ex: Ni, C, Sb. Ni has a special characteristic that Ni does not react with Li so that Ni can decrease the reactivity of Mg. In addition, C has features such as abundant material supply and relatively low cost. Therefore, Mg adding these materials becomes the best candidate of anode materials for lithium-ion rechargeable batteries.
In this study, Mg-based thin film and powder anodes were both prepared, and then their microstructures, charge-discharge characteristics and electrochemical properties were investigated. The results showed that Mg-C powders system had an interface effect of Cu foil to reduce the electrochemical reaction. And it had better cycle performance at initial stage with increasing ratio of C powder and adding Ni powder and Ni thin film can decrease the activity of Mg anodes in order to increase the stability of batteries. Although Mg-Ni powder electrode did not improve the discharge characteristic significantly at room temperature, it had good performance at high temperature. Then surface morphology of electrode and mechanism of ion dissolved in electrolyte were discussed. As result, it can be proved that electrochemical properties Mg-Ni powder electrode has close relation with high temperature cyclability.
1. G. Pistoria, “Lithium Batteries: New Materials, Developments and Perspectives”, Elsevier, Chap.1 (1994) p. 3-10.
2. S. Yi, J. Bohlen, F. Heinemann, D. Letzig, “Lithium batteries: Status, prospects and future”, Acta Materialia, 58 (2010) p.592-605.
3. M. H. Pishbin, R. Mahmudi, “Tearing energy of AZ31 magnesium alloy sheets determined by the multiple tensile testing method”, Materials and Design, 31 (2010) 3618-3623.
4. B. Scosati, J. Garche, “Lithium batteries: Status, prospects and future”, J. PowerSources, 195 (2010) 2419.
5. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. V. Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices”, Nat. Mater., 4 (2005) p. 366.
6. A. K. Shukla, T. P. Kumar, “Materials for next-generation lithium batteries”, Curr. Sci. 94 (2008) 314.
7. M. Winter, J. O. Besenhard, “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochim. Acta, 45 (1999) 31.
8. R. Benedek, M. M. Thackeray, “Lithium reactions with intermetallic-compound electrodes”, J. Power Sources, 110 (2002) 406.
9. U. Kasavajjula, C. Wang, A. J. Appleby, “Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells- A Review”, J. Power Sources, 163 (2007) p.1003.
10. O. Mao, B. L. Turner, D. W. McClure, Courtney Ian A., L. J. Krause, J. R. Dahn, “Active/Inactive Nanocomposites as Anodes for Li-Ion Batteries”, Electrochem. Solid-State Lett., 2 (1999) 3.
11. K. D. Kepler, J. T. Vaughey, M. Thackeray, “LixCu6Sn5 (0<x<13): An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries”, Electrochem. Solid-State Lett. 2 (1999) 307.
12. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, Z. Ogumi, “Carbon-Coated Si as a Lithium-Ion Battery Anode Material”, J. Electrochem. Soc. 149 (2002) A1598.
13. Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, Y. Takeda, “Silicon/Carbon Composites as Anode Materials for Li-Ion Batteries”, Electrochem. Solid-State Lett. 7 (2004) A369.
14. W. J. Zhang, “A review of the electrochemical performance of alloy anodes for lithium-ion batteries”, J. Power Sources, 196(2011) p. 13-24.
15. B. Scrosati, “Lithium Rocking Chair Batteries: An Old Concept?”, J. Electrochem. Soc., 139(1992) p. 2776-2780.
16. S. Megahed, B. Scrosati, “Lithium-ion Rechargeable Batteries”, J. Power Sources, 51 (1994) p. 79-104.
17. M. Winter, J. O. Besenhard, M. E. Spahr, P. Novák, “Insertion Electrode Materials for Rechargeable Lithium Batteries”, Adv. Mater., 10 (1998) p. 725-763.
18. T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine, “A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life”, J. Power Sources, 129, 1 (2004) p. 96-100.
19. K. Hirai, T. Ichitsubo, T. Uda, A. Miyazaki, S. Yagi, E. Matsubara, “Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries”, Acta Materialia, 56, 7 (2008) p. 1539-1545.
20. P. Cui, Z. Jia, L. Li, T. He, “Preparation and characteristics of Sb-doped LiNiO2 cathode materials for Li-ion batteries.” , J. Physics and Chemistry of Solids, 72, 7(2011) p. 899-903.
21. P. Elumalai, H. N. Vasan, N. Munichandraiah, “Microwave synthesis and electrochemical properties of LiCo1−xMxO2 (M = Al and Mg) cathodes for Li-ion rechargeable batteries”, J. Power Sources, 125, 1 (2004) p. 77-84.
22. C. M. Park, S. Yoon, S. I. Lee, H. J. Sohn, “Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries”, J. Power Sources, 186, 1 (2009) p 206-210.
23. D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman, E. Levi, “A short review on the comparison between Li battery systems and rechargeable magnesium battery technology”, J. Power Sources, 97-98 (2001) p. 28-32.
24. R. Benedek, M. M. Thackeray, “Lithium reactions with intermetallic-compound electrodes”, J. Power Sources, 110, 2, (2002), p. 406-411.
25. H. Kim, B. Park, H. J. Sohn, T. Kang, “Electrochemical characteristics of Mg–Ni alloys as anode materials for secondary Li batteries”, J. Power Sources, 90, 1 (2000) p. 59-63.
26. N. S. Venkata Narayanan, B. V. Ashok Raj, S. Sampath, “Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting room temperature, ternary molten electrolytes”, J. Power Sources 195 (2010) p.4356-4364.
27. N. Yoshimotoa, M. Matsumotoa, M. Egashiaa, M. Moritaa, “Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode”, J. Power Sources, 195 (2010) p.2096-2098.
28. S. Ghosh, A. D. Sharma, A. K. Mukhopadhyay, P. Kundu, R. N. Basu, “Effect of BaO addition on magnesium lanthanum alumino borosilicate-based glass-ceramic sealant for anode-supported solid oxide fuel cell”, International Journal of hydrogen energy, 35 (2010) p.272-283.
29. C. P. Liang, H. R. Gong, “Phase stability, mechanical property, and electronic structure of Mg–Li system”, J. Alloys and Compounds, 489, (2010), p.130-135.
30. L. Gao, C. Zhang, M. Zhang, X. Huang, X. Jiang, “Phytic acid conversion coating on Mg–Li alloy”, J. Alloys and Compounds, 485 (2009) p.789-793.
31. H. Inoue, T. Ueda, S. Nohara, N. Fujita, “Effect of ball-milling on electrochemical and physicochemical characteristics of crystalline Mg2Ni alloy”, C. Iwakura, Electrochimica Acta, 43, 14-15 (1998),p. 2215-2219.
32. S. Rousselot, A. Gazeau, D.l Guay, L. Roue, “Influence of Pd on the structure and electrochemical hydrogen storage properties of Mg50Ti50 alloy prepared by ball milling”, Electrochimica Acta, 55 (2010) p.611-619.
33. A. S. Ingason, A. K. Eriksson, S. Olafsson, “Hydrogen uptake in Mg:C thin films”, J. Alloys and Compounds, 446-447,(2007) p.530-533.
34. K. L. Lee, J. Y. Jung, S. W. Lee, H. S. Moon and J. W. Park, “Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries”, J. Power Sources 129 (2004) p. 270.
35. J. Niu and J. Y. Lee, “Improvement of Usable Capacity and Cyclability of Silicon-Based Anode Materials for Lithium Batteries by Sol-Gel Graphite Matrix”, Electrochem. Solid State Lett. 5 (2002) p. A107.
36. T. D. Hatchard, M. N. Obrovac and J. R. Dahn, “A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i”, J. Electrochem. Soc. 153 (2006) p. A282.
37. T. D. Hatchard, M. N. Obrovac and J. R. Dahn, “Electrochemical Reaction of the Si1–xZnx Binary System with Li”, J. Electrochem. Soc. 152 (2005) p. A2335.
38. L. Y. Beaulieu, K. C. Hewitt, R. L. Turner, Bonakdarpour, A. A. Abdo, L. Christensen, K. W. Eberman, L. J. Krause and J. R. Dahn, “The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys”, J. Electrochem. Soc. 150 (2003) p. A149.
39. S. S. Zhang, K. Xu, T. R. Jow, “EIS study on the formation of solid electrolyte interface in Li-ion battery”, Electrochimica Acta, 51, 8-9 (2006) p. 1636-1640.
40. M. M. Rahman, S. L. Chou, C. Zhong, J. Z. Wang, D. Wexler, H. K. Liu, “Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention”,Solid State Ionics, 180, 40 (2010) p. 1646-1651.
41. L. Z. Ouyang, H. Wang, C. H. Peng, M. Q. Zeng, C. Y. Chung, M. Zhu, “Formation of MgCNi3 and Mg–Ni amorphous mixture by mechanical alloying of Mg–Ni–C system”, Materials Letters, 58, 16 (2004) p. 2203-2206.
42. L. A. Bendersky, and F. W. Gayle, “Electron Diffraction Using Transmission Electron Microscopy”, J. Res. Natl. Inst. Stand. Technol., 106 (2001) p. 997-1012.
43. C. V. Gulijk, K. M. Lathouder, and R. Haswell, “Characterizing Herring Bone Structures in Carbon Nanofibers Using Selected Area Electron Diffraction and Dark Field Transmission Electron Microscopy”, Carbon, 44(2006) p. 2950-2956.
44. F. M. Smits, “Measurement of Sheet Resisitivities with the Four-Point Probe”, Bell Syst. Tech. J., 37 (1958) p. 711-718.
45. P. Rojas, S. Ordoñez, D. Serafini, A. Zúñiga, E. Lavernia, “Microstructural evolution during mechanical alloying of Mg and Ni”, J. Alloys and Compounds, 391, 1-2,(2005) p. 267-276
46. X. B. Zhao and G. S. Cao, “A study of Zn4Sb3 as a negative electrode for secondary lithium cells”, Electrochim. Acta 46 (2001) p. 891.
47. M. Stjerndahl, H. Bryngelsson, T. Gustafsson, J. T. Vaughey, M. M. Thackeray and K. Edstrom, “Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries”, Electrochim. Acta, 52 (2007) p. 4947.
48. J. Xie, X. B. Zhao, G. S. Cao, M. J. Zhao and S. F. Su, “Electrochemical Li-uptake properties of nanosized NiSb2 prepared by solvothermal route”, J. Alloys Compd. 393 (2005) p. 283.
49. O. J. Kwon, Y. S. Jung, J. H. Kim, S. M. Oh, “A simple preparation method for spherical carbons and their anodic performance in lithium secondary batteries”, J. Power Sources, 125 (2004) p. 221-227.
50. Ronald A. Guidotti, Patrick J. Masset, “Thermally activated (“thermal”) battery technology Part IV. Anode materials”, J. Power Sources, 183, 1 (2008) p. 388-398.