簡易檢索 / 詳目顯示

研究生: 周盈年
Chou, Ying-Nien
論文名稱: 仿生功能型雙離子甜菜鹼共聚物 – 熱塑型分子設計、泛用接枝控制與生物感測應用
Bio-inspired Functional Zwitterionic Betaine Copolymers – Thermo-settable Molecular Design, Universal Grafting Control, and Biosensor Applications
指導教授: 溫添進
Wen, Ten-Chin
共同指導教授: 張雍
Chang, Yung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 220
中文關鍵詞: 抗沾黏共聚高分子血液相容性雙離子甜菜鹼生物惰性表面全表面塗佈表面電漿共振生物感測器
外文關鍵詞: Antifouling copolymers, blood compatibility, zwitterionic betaine, bio-inert interface, universal grafting, SPR biosensor
相關次數: 點閱:111下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有良好人體與環境相容性的材料在現今的研究領域逐漸受到重視,其中,仿生型雙離子材料如phosphobetaine(PB)、sulfobetaine(SB) 和 carboxybetaine(CB)等結構被視為目前的效能最佳方案。雙離子結構之仿生概念取自細胞膜表面的磷脂質(PB),其正負電結構可形成穩定水合層使表面具有超親水性。甜菜鹼carboxylbetaine與硫代甜菜鹼sulfobetaine具有類似的雙離子結構可具備超親水性以抵抗生物性黏附,相較於PB, SB與CB有低成本與易於製備的優點。本研究將以甜菜鹼系列的SB與CB為主軸,分別在三個章節中討論其高分子結構的製作方法、材料特性與抗生物黏附效能,並應用於表面塗層與生物感測器的範疇。
    第一個部分研究具有熱塑性質的雙離子共聚物結構,此結構可具有良好的高溫容忍度,並可抵抗各類型的生物黏附。 在共聚物poly(vinylpyrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA))之中,藉由精確地調控VP與SBMA在高分子中的組成比例,可使材料同時兼具熱容忍度與抗沾黏效果。 我們在研究中探討poly(VP-co-SBMA)製作成的水膠以及其熱塑後的網狀結構,在抵抗一般性生物黏附如蛋白質、細胞、細菌的效果。 值得注意的是,poly(VP-co-SBMA)共聚網狀結構在經過200度的熱塑處理後,可以具有塑形效果,並且仍可維持良好的抗生物沾黏特性。然而,雙離子的PSBMA共聚結構具有好的生物惰性,卻在高溫熱塑處理後發現喪失了抗生物沾黏的效果。我們同時得到最佳化的結果是,poly(VP-co-SBMA) 的共聚網狀結構需要有PSBMA的組成鏈段在32mol%到61mol%之間時可有效減低蛋白質吸附、組織細胞以及細菌貼附,進而提升材料在人體血液中的相容性。 根據此部分的研究,poly(VP-co-SBMA)共聚物可在高溫塑形後保持良好的抗生物沾黏效果,因此具有可應用在醫療器材中的潛力,例如在本研究中所舉出在金屬人工支架的應用實例。
    在第二個部分的研究中,一個新的共聚物結構與塗層技術被用來挑戰全面性的塗佈,並能具備抗生物沾黏的需求。 我們設計出具有雙離子與環氧基團的ploy(glycidyl methacrylate-co-sulfobetaine methacrylate) (poly(GMA-co-SBMA)),其可接枝在多樣性的材料基板表面包含陶瓷、金屬、塑膠等。Poly(GMA-co-SBMA)的表面接枝原理是基於目標表面上的氫氧基團與高分子上的環氧基所進行的鹼性催化開環反應。基由此特性,再結合最佳化後的紫外光臭氧處裡與三乙胺鹼性催化,poly(GMA-co-SBMA)可以全面性的接枝在各種類型的材料基板如矽晶圓、玻璃、鈦、不鏽鋼與聚乙烯上,並形成雙離子化的表面。 Poly(GMA-co-SBMA)的最佳組成是當PGMA/PSBMA的莫爾比例在0.23與分子量在25 kDa時可最有效的抵抗生物性吸附,蛋白質吸附量可減低超過90%,而血球細胞,組織細胞以及細菌貼附皆能有效降低。此研究開發的抗生物沾黏接枝法,可全面的在各類多樣性的基材形成雙離子界面,並有極大的潛力應用在醫療材料的塗佈中。
    在醫療診斷用的表面型元件應用上,最重要的課題是要能在複雜介質如人體血液之中精準的偵測生物標定物。在第三部分中,新型製作雙離子水膠塗層的方法被用來解決此課題。Poly(carboxybetaine acrylamide) (pCBAA) 所製作成的CB水膠薄層是將CBAA單體與CB型交聯劑carboxybetaine diacrylamide(CBAAX)直接旋轉塗布在金與氧化矽基板的表面而得。CB水膠薄層的厚度可藉由改變交聯劑的濃度而精準的控制在15到150奈米之間,同時此薄層可具有長時穩定性。 表面電漿共振感測器被用來測定CB水膠薄層在未稀釋人體血清中的蛋白質吸附效果,當厚度大於20奈米時可達到超低吸附的效果(小於5ng/cm2)。 此外,CB水膠薄層可高效率的被抗體修飾,進而偵測特定的生物標定物且不喪失抗生物沾黏特性。此技術提供了一個快速有效的方法來製作具有抗生物沾黏的表面電漿共振生物感測晶片,同時此技術極具潛力可應用在各類的植入性醫療器材與醫用生物感測器之上。

    Recently, it is imperative regarded of the materials with well-defined human and environmental compatibility. The biomimic zwitterionic materials such as phosphobetaine(PB)、sulfobetaine(SB) 和 carboxybetaine(CB) are considered as the most efficient solutions for this issue. The concept of zwitterionic structure was firstly developed from the phospholipid of cell membrane surface. The neutral charge with positive and negtive is capable to fomr a stable hydration layer on the surface thereby providing the ultra-hydrophilicity. Carboxylbetaine and sulfobetaine contain a similar zwitterionic structure which could reduce the bio-fouling due to its hydrophilic characteristic. Meanwhile, CB and SB have the advantages of low-cost and facile synthesis. In this study, we use SB and CB as the antifouling strategy and discuss their antifouling property of polymer and the application of surface coating and biosensor.
    In the first section, we introduced a thermo-settable zwitterionic copolymer to design a high temperature tolerance biomaterial as a general antifouling polymer interface. The original synthetic fouling-resistant copolymer, poly(vinylpyrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA)), is both thermal-tolerant and fouling-resistant, and the antifouling stability of copolymer coated interfaces can be effectively controlled by regulating the VP/SBMA composition ratio. We studied poly(VP-co-SBMA) copolymer gels and networks with a focus on their general resistance to protein, cell, and bacterial bio-adhesion, as influenced by the thermo-setting process. Interestingly, we found that the shape of the poly(VP-co-SBMA) copolymer material can be set at a high annealing temperature of 200°C while maintaining good antifouling properties. However, while the zwitterionic PSBMA polymer gels were bio-inert as expected, control of the fouling resistance of the PSBMA polymer networks was lost in the high-temperature annealing process. A poly(VP-co-SBMA) copolymer network composed of PSBMA segments at 32 mol% showed reduced fibrinogen adsorption, tissue cell adhesion, and bacterial attachment, but a relatively higher PSBMA content of 61 mol% was required to optimize resistance to platelet adhesion and erythrocyte attachment to confer hemocompatibility to human blood. We suggest that poly(VP-co-SBMA) copolymers capable of retaining stable fouling resistance after high temperature shaping have a potential application as thermo-settable materials in a bio-inert interface for medical devices, such as the thermo-settable coating on a stainless steel blood-compatible metal stent investigated in this study.
    The second section reported that most biomaterials have a lack of a simple, efficient and robust antifouling modification approach that limits their potential for biomedical applications. The challenge is to develop a universal surface grafting solution to meet the antifouling requirement. In this work, a new formulation of zwitterionic sulfobetaine-based copolymer, ploy(glycidyl methacrylate-co-sulfobetaine methacrylate) (poly(GMA-co-SBMA)), is designed as a chemical for grafting onto material and is introduced for the surface zwitterionization of versatile biomaterials, including ceramic, metal, and plastics. The grafting principle used to stabilize the poly(GMA-co-SBMA) on the target surfaces is based the base-induced ring opening reaction between epoxied and hydroxyl groups. A universal surface modification procedure was developed and performed from an optimized sequence of ultra-violet ozone pretreatment and trimethylamine-catalyzed zwitterionization on a selective case of versatile surfaces including silicon wafer, ceramic glass, titanium, steel, and polystyrene. The prepared poly(GMA-co-SBMA) with an optimum PGMA/PSBMA ratio of 0.23 and a molecular weight of 25 kDa exhibited the best resistance to fibrinogen adsorption with over 90% reduction as well as blood cell activation, tissue cell adhesion and bacterial attachment on the zwitterionic copolymer grafted surfaces. The developed antifouling grafting introduces a universal modification method to generate zwitterionic interfaces on versatile biomaterial substrates, providing great potential for application in medical device coating.
    For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and having high loading of biorecognition elements are paramount. In the third section, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150 nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20 nm exhibited ultra-low fouling (<5 ng/cm2). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors.

    Content 中文摘要 ii Abstract vii 誌謝 xi Content xv Figure Index xxi Table Index xxxiii List of Publications xxxiv Chapter 1 Research background and organization 1 1-1 Background 1 1-1-1 Biomaterials and Biointerfaces 8 1-1-2 Antifouling materials 11 1-1-3 Blood compatibility 14 1-1-4 Zwitterionic betaines 46 1-1-5 “Graft” strategy 49 1-1-6 Hydrogel coating 52 1-1-7 Surface zwitterionization 53 1-1-8 Implants 73 1-1-9 Biosensors 74 1-2 Research organization 83 1-2-1 Thermo-settable Biomaterial 83 1-2-2 Universal coating 85 1-2-3 Biosensor applications 86 Chapter 2 material and Method 88 2-1 Materials 88 2-2 Instrument 89 2-2-1 GPC measurement 89 2-2-2 NMR analysis 90 2-2-3 Fourier-transform infrared spectroscopy 90 2-2-4 X-ray photoelectron spectroscopy 91 2-2-5 Scanning Electron Microscope 91 2-2-6 Zeta potential 92 2-3 Methods 92 2-3-1 Hydrogel and network preparation 92 2-3-2 Swelling ratio, moduli and shapping degree 93 2-3-3 Random copolymerization 94 2-3-4 Copolymer characterization 94 2-3-5 Graft to coating on various surfaces 95 2-3-6 Characterization of various coated surfaces 95 2-3-7 SPR measurement – surface packing density and protein adsorption 96 2-3-8 Contact angle measurement 97 2-3-9 ELISA protein adsorption and human blood cell attachment 97 2-3-10 Hemolysis 99 2-3-11 Tissue cell attachment 100 2-3-12 Bacteria attachment 101 2-3-13 Synthesis of carboxybetaine diacrylamide crosslinker 102 2-3-14 Preparation of CBAA hydrogel solution and coating on SPR sensor chips 103 2-3-15 Film thickness and film stability analysis 104 2-3-16 SPR-protein adsorption, antibody immobilization, antigen detection 104 2-3-17 Application on stainless steel(stent) and medical devices grafting 105 2-3-18 Statistical analysis 106 Chapter 3 Thermo-settable Zwitterionic Copolymers and Thermal-tolerant Biomaterial Interfaces 107 3-1 Objective 107 3-2 Result and Discussion 109 3-2-1 Hydrogel and network characterization 110 3-2-2 Swelling ratio and shaping degree 112 3-2-3 Moduli analysis 113 3-2-4 XPS elemental analysis 115 3-2-5 Human Blood Compatibility 119 3-2-6 Fibroblast Cell Attachment 125 3-2-7 Antibacterial Efficacy 127 3-2-8 Zeta Potential 129 3-2-9 Clinical Aspects of the Thermo-settable Poly(VP-co-SBMA) Networks Applied to a Hemocompatible Metal Stent. 130 3-3 Conclusion 133 Chapter 4 Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces 178 4-1 Objective 178 4-2 Result and Discussion 180 4-2-1 Polymerization of Poly(GMA-co-SBMA) Copolymers 180 4-2-2 Preparation and Characterization of Poly(GMA-co-SBMA) Grafted Surfaces. 182 4-2-3 Poly(GMA-co-SBMA) Grafted Ceramic, Metal, and Polymeric Surfaces. It is a challenge to develop a universal surface grafting approach to achieve the antifouling requirement for various biomaterial interfaces. In this research, we introduced the GMA segment into the zwitterionic copolymer to produce a surface-coating ability. Previous researches have been reported the formation of GMA and antifouling units, such as polyethylene glycol(PEG) and phosphobetaine (PB), to applied in optical sensor and microarray devices [260-264]. However, their results are limited in specific substrate and hard to apply to various surfaces. Thus, poly(GMA-co-SBMA) copolymer was used to demonstrate the feasibility of universal surface grafting from the selected G20-S80 with an optimized coating condition on the target model surfaces of ceramic (silicon, glass), metal (titanium, stainless steel), and polymers (polystyrene). For the surface formation of hydroxyl groups on these model substrates, the peroxides were firstly formed by a ultra-violet zone (O3/O2) pre-treatment and subsequent DI-water incubation for 24 h at 80 oC. The coating conditions related to ozone treatment time and copolymer concentrations of the G20-S80 were tested and optimized for different model surfaces as summarized in Table 2. It was found that the ozone treatment time for ceramic and metal substrates with sufficient hydroxyl groups is between 10 to 30 min, which is shorter than that for the polymeric substrate required 60 min. For the chemical characterization, XPS was used to identify the grafting feasibility of the G20-S80 copolymers on different model surfaces. 188 4-2-4 General Bio-fouling Tests: Human Blood Cells, Fibroblast Cells, and Bacterial 195 4-2-5 Applicable surface grafting of the poly(GMA-co-SBMA) copolymers on medical devices 200 4-3 Conclusion 203 Chapter 5 Ultra-Low Fouling and High Antibody Loading Zwitterionic Hydrogel Coatings for Sensing and Detection in Complex Media 183 5-1 Objective 183 5-2 Result and Discussion 185 5-2-1 Synthesis of CBAAX 185 5-2-2 CB hydrogel thin film preparation 186 5-2-3 Dry and wet thickness and stability of CBHTF 187 5-2-4 Protein adsorption – human serum 188 5-2-5 Surface functionalization and detection 191 5-3 Conclusion 193 Chapter 6 Summary and future outlook 198 Reference 201

    Reference
    [1] T.A. Horbett, Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials. Cardiovas. Pathol., 1993, 2, 137-148.
    [2] V. Hlady and J. Buijs, Protein adsorption on solid surfaces. Curr. Opin. Biotechnol., 1996, 7, 72-77.
    [3] J.M. Anderson, Biological responses to materials. Annu. Rev. Mater. Res., 2001, 31, 81-110.
    [4] J.M. Anderson, A. Rodriguez and D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol., 2008, 20, 86-100.
    [5] D.G. Castner and B.D. Ratner, Biomedical surface science: Foundations to frontiers. Surf. Sci., 2002, 500, 28-60.
    [6] R. Hernandez-Pando, Q.L. Bornstein, D. Aguilar Leon, E.H. Orozco, V.K. Madrigal and E. Martinez Cordero, Inflammatory cytokine production by immunological and foreign body multinucleated giant cells. Immunology, 2000, 100, 352-358.
    [7] P.M. Henson, The immunologic release of constituents from neutrophil leukocytes. J. Immunol., 1971, 107, 1535-1546.
    [8] A. Haas, The phagosome: Compartment with a license to kill. Traffic, 2007, 8, 311-330.
    [9] C. Mao, Y. Qiu, H. Sang, H. Mei, A. Zhu, J. Shen and S. Lin, Various approaches to modify biomaterial surfaces for improving hemocompatibility. Adv. Colloid Interface Sci., 2004, 110, 5-17.
    [10] E.A. Vogler and C.A. Siedlecki, Contact activation of blood-plasma coagulation. Biomaterials, 2009, 30, 1857-1869.
    [11] B. Furie and B.C. Furie, Mechanisms of thrombus formation. N. E. J. Med., 2008, 359, 938-949.
    [12] P. de Moerloose, F. Boehlen and M. Neerman-Arbez, Fibrinogen and the risk of thrombosis. Semin. Thromb. Hemost., 2010, 31, 7-17.
    [13] D.R. Lu and K. Park, Effect of surface hydrophobicity on the conformational changes of adsorbed fibrinogen. J. Colloid Interface Sci., 1991, 144, 271-281. 8
    [14] S.M. Slack and T.A. Horbett, Changes in the strength of fibrinogen attachment to solid surfaces: An explanation of the influence of surface chemistry on the vroman effect. J. Colloid Interface Sci., 1989, 133, 148-165.
    [15] W.-J. Hu, J.W. Eaton, T.P. Ugarova and L. Tang, Molecular basis of biomaterial-mediated foreign body reactions. Blood, 2001, 98, 1231-1238.
    [16] L. Tang, T.P. Ugarova, E.F. Plow and J.W. Eaton, Molecular determinants of acute inflammatory response to biomaterials. J. Clinic. Invest., 1996, 97, 1329-1334.
    [17] C.J. Wilson, R.E. Clegg, D.I. Leavesley and M.J. Pearcy, Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng., 2005, 11, 1-18.
    [18] P. Thevenot, W. Hu and L. Tang, Surface chemistry influences implant biocompatibilty. Curr. Top. Med. Chem., 2008, 8, 270-280.
    [19] C.R. Jenny and J.M. Anderson, Adsorbed serum proteins responsible for surface dependent human macrophage behaviour. J. Biomed. Mater. Res., 2000, 49, 435-447.
    [20] A. Hucknall, S. Rangarajan and A. Chilkoti, In pursuit of zero: Polymer brushes that resist the adsorption of proteins. Adv. Mater., 2009, 21, 2441-2446.
    [21] B.D. Ratner and S.J. Bryant, Biomaterials: Where we have been and where we are going. Annu. Rev. Biomed. Eng., 2004, 6, 41-75.
    [22] H. Chen, L. Yuan, W. Song, Z. Wu and D. Li, Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci., 2008, 33, 1059-1087.
    [23] C.A. Haynes and W. Norde, Globular proteins at solid/liquid interfaces. Colloids Surf., B, 1994, 2, 517-566.
    [24] E.A. Vogler, Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci., 1998, 74, 69-117.
    [25] F. Hofmeister, Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol., 1888, 24, 248-260.
    [26] W. Kunz, J. Henle and B.W. Ninham, Zur Lehre von der Wirkung der Salze' (about the science of the effect of salts): Franz hofmeister's historical papers. Curr. Opin. Colloid Interface Sci., 2004, 9, 19-37.
    [27] K.D. Collins, Charge density-dependent strength of hydration and biological structure. Biophys. J., 1997, 72, 65-76.
    [28] K. Rechendorff, M.B. Hovgaard, M. Foss, V.P. Zhdanov and F. Besenbacher, Enhancement of protein adsorption induced by surface roughness. Langmuir, 2006, 22, 10885-10888.
    [29] W. Song and H. Chen, Protein adsorption on materials surfaces with nano-topography. Chin. Sci. Bull., 2007, 52, 3169-3173.
    [30] J. Zheng, W. Song, H. Huang and H. Chen, Protein adsorption and cell adhesion on polyurethane/pluronic surface with lotus leaf-like topography. Colloids Surf., B, 2010, 77, 234-239.
    [31] A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth and W. Barthlott, The dream of staying clean: Lotus and biomimetic surfaces. Bioinspir. Biomim., 2007, 2, S126-S134.
    [32] Y.T. Cheng, D.E. Rodak, C.A. Wong and C.A. Hayden, Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology, 2006, 17, 1359-1362.
    [33] L. Vroman and A.L. Adams, Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surf. Sci., 1969, 16, 438-446.
    [34] W. Norde and C.E. Giacomelli, BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J. Biotechnol., 2000, 79, 259-268.
    [35] W. Norde and C.E. Giacomelli, Conformational changes in proteins at interfaces : From solution to the interface, and back. Macromol. Symp., 1999, 145, 125-136.
    [36] D.F. Williams, On the nature of biomaterials. Biomaterials, 2009, 30, 5897-5909.
    [37] J.W. Burns, Biology takes centre stage. Nat. Mater., 2009, 8, 441-443.
    [38] D.F. Williams, On the mechanisms of biocompatibility. Biomaterials, 2008, 29, 2941-2953.
    [39] J.M. Anderson, Biological responses to materials. Annu. Rev. Mater. Res., 2001, 31, 81-110.
    [40] G.J. Picha, J.A. Goldstein and E. Stohr, Natural-Y meme polyurethane versus smooth silicone: Analysis of the soft-tissue interaction from 3 days to 1 year in the rat animal model. Plast. Reconstr. Surg., 1990, 85, 903-916.
    [41] C.A. Behling and M. Spector, Quantitative characterization of cells at the interface of long-term implants of selected polymers. J. Biomed. Mater. Res., 1986, 20, 653-666.
    [42] N.P. Desai and J.A. Hubbell, Tissue response to intraperitoneal implants of
    poly(ethylene oxide)-modified poly(ethylene terephthalate). Biomaterials, 1992,
    13, 505-510.
    [43] L. Christenson, P. Aebischer, P. McMillan and P.M. Galletti, Tissue reaction to intraperitoneal polymer implants: Species difference and effects of corticoid and doxorubicin. J. Biomed. Mater. Res., 1989, 23, 705-718.
    [44] Inflammation: Basic principles and clinical correlates, ed. J.I. Gallin, I.M. Goldstein, and R. Snyderman, 1988, New York, Raven Press.
    [45] C. Gretzer, L. Emanuelsson, E. Liljensten and P. Thomsen, The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. J. Biomater. Sci., Polym. Ed., 2006, 17, 669-687.
    [46] H. Wokalek and H. Ruh, Time course of wound healing. J. Biomater. App., 1991, 5, 337-362.
    [47] R. Marchant, A. Hiltner, C. Hamlin, A. Rabinovitch, R. Slobodkin and J.M. Anderson, In vivo biocompatibility studies. I. The cage implant system and a biodegradable hydrogel. J. Biomed. Mater. Res., 1983, 17, 301-325.
    [48] G.T. Williams and W.J. Williams, Granulomatous inflammation--a review. J. Clin. Pathol., 1983, 36, 723-733.
    [49] B. Nilsson, K.N. Ekdahl, T.E. Mollnes and J.D. Lambris, The role of complement in biomaterial-induced inflammation. Mol. Immunol., 2007, 44, 82-94.
    [50] R.W. Colman, Surface-mediated defense reactions. The plasma contact activation system. J Clin. Invest., 1984, 73, 1249-1253.
    [51] M. Levi, T. van der Poll and H.R. Buller, Bidirectional relation between inflammation and coagulation. Circulation, 2004, 109, 2698-2704.
    [52] M. Katsikogianni and Y.F. Missirlis, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions Eur. Cells Mater., 2004, 8, 37-57.
    [53] N.M.K. Lamba, J.N. Baumgartner and S.L. Cooper, The influence of thrombus components in mediating bacterial adhesion to biomaterials. J. Biomat. Sci.- Polym. Ed., 2000, 11, 1227-1237.
    [54] B. Jansen, G. Peters and G. Pulverer, Mechanisms and clinical relevance of bacterial adhesion to polymers. J. Biomater. App., 1987, 2, 520-543.
    [55] J.M. Anderson, A. Rodriguez and D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol., 2008, 20, 86-100.
    [56] D.G. Anderson, J.A. Burdick and R. Langer, Smart biomaterials. Science, 2004, 305, 1923-1924.
    [57] S.E. Sakiyama-Elbert and J.A. Hubbell, Functional biomaterials: Design of novel biomaterials. Annu. Rev. Mater. Res., 2001, 31, 183-201.
    [58] C. Wischke, A.T. Neffe and A. Lendlein, Controlled drug release from biodegradable shape-memory polymers, in Advances in polymer science. 2011, Springer-Verlag, Berlin/Heidelberg, p. 177-205.
    [59] K.R. Kamath, J.J. Barry and K.M. Miller, The taxus TM drug-eluting stent: A new paradigm in controlled drug delivery. Adv. Drug Deliver. Rev., 2006, 58, 412-436.
    [60] H.M. Burt and W.L. Hunter, Drug-eluting stents: A multidisciplinary success story. Adv. Drug Deliver. Rev., 2006, 58, 350-357.
    [61] B. Urbaschek and R. Urbaschek, The inflammatory response to endotoxins. Bibl. Anat., 1979, 17, 74-104.
    [62] C.M. Pierce, A. Wade and Q. Mok, Heparin-bonded central venous lines reduce thrombotic and infective complications in critically ill children. Intens. Care Med., 2000, 26, 967-972.
    [63] D.A. Long and M.G. Coulthard, Effect of heparin-bonded central venous catheters on the incidence of catheter-related thrombosis and infection in children and adults. Anaesth. Intens. Care 2006, 34, 481-484.
    [64] R.J. Linhardt and T. Toida, Heparin oligosaccharides: New analogs development and applications, in Carbohydrates in drug design, J.W. Zbigniew and A.N. Karl, Editors. 1997, Marcel Dekker, Inc., New York, p. 277-341.
    [65] R.J. Linhardt, Heparin: An important drug enters its seventh decade. Chem. Indust., 1991, 2, 45-45.
    [66] Hoffman, A. S. Biomaterials: Interfacial Phenomena and Applications; Cooper, S. L., Peppas, N. A., Hoffman, A. S., Ratner, B. D. ;American Chemical Society: Washington, DC, 1982; Chapter 1, pp 3-8.
    [67] Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials Science, an Introduction to Materials in Medicine, 2nd ed.; Elsevier: Amesterdam, 2004.
    [68] Ratner, B. D. The Catastrophe Revisited: Blood Compatibility in the 21st Century. Biomaterials 2007, 28, 5144–5147.
    [69] Ratner, B. D.; Bryant, S. J. Biomaterials: Where We Have Been and Where We Are Going. Annu. Rev. Biomed. Eng. 2004, 6, 41–75.
    [70] Jiang, S.; Cao, Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010, 22, 920–932.
    [71] Chen, S.; Jiang, S. A New Avenue to Nonfouling Materials. Adv. Mater. 2008, 20, 335–338.
    [72] Xu, F. J.; Neoh, K. G.; Kang, E. T. Bioactive Surfaces and Biomaterials via Atom Transfer Radical Polymerization. Prog. Polym. Sci. 2009, 34, 719–761.
    [73] Sin, M.-C.; Chen, S.-H.; Chang, Y. Hemocompatibility of Zwitterionic Interfaces and Membranes. Polym. J. 2014, 46, 436–443.
    [74] Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T. A.; Ratner, B. D.; Jiang, S. Blood Compatibility of Surfaces with Superlow Protein Adsorption. Biomaterials 2008, 29, 4285–4291.
    [75] Chang, Y.; Shih, Y.-J.; Lai, C.-J.; Kung, H.-H.; Jiang, S. Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. Adv. Funct. Mater. 2013, 23, 1100–1110.
    [76] Liu, L.; Chen, G.; Chao, T.; Ratner, B. D.; Sage, E. H.; Jiang, S. Reduced Foreign Body Reaction to Implanted Biomaterials by Surface Treatment with Oriented Osteopontin. J. Biomater. Sci. Polym. Ed. 2008, 19, 821–835.
    [77] Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel Nanoparticles in Drug Delivery. Adv. Drug Delivery Rev. 2008, 60, 1638–1649.
    [78] Cao, Z.; Yu, Q.; Xue, H.; Cheng, G.; Jiang, S. Nanoparticles for Drug Delivery Prepared from Amphiphilic PLGA Zwitterionic Block Copolymers with Sharp Contrast in Polarity between Two Blocks. Angew. Chem. 2010, 122, 3859–3864.
    [79] Chang, Y.; Chang, W.-J.; Shih, Y.-J.; Wei, T.-C.; Hsiue, G.-H. Zwitterionic Sulfobetaine-Grafted poly(VINYLIDENE FLUORIDE) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization. ACS Appl. Mater. Interfaces 2011, 3, 1228–1237.
    [80] Chang, Y.; Liao, S.-C.; Higuchi, A.; Ruaan, R.-C.; Chu, C.-W.; Chen, W.-Y. A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir 2008, 24, 5453–5458.
    [81] Yang, W.; Bai, T.; Carr, L. R.; Keefe, A. J.; Xu, J.; Xue, H.; Irvin, C. a; Chen,
    S.; Wang, J.; Jiang, S. The Effect of Lightly Crosslinked Poly(carboxybetaine) Hydrogel Coating on the Performance of Sensors in Whole Blood. Biomaterials 2012, 33, 7945–7951.
    [82] Zhang, Z.; Finlay, J. a; Wang, L.; Gao, Y.; Callow, J. a; Callow, M. E.; Jiang, S. Polysulfobetaine-Grafted Surfaces as Environmentally Benign Ultralow Fouling Marine Coatings. Langmuir 2009, 25, 13516–13521.
    [83] Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S. L.; Mutton, R.; Clare, A. S.; Wang, S.; Liu, Y.; Zhao, Q.; D’Souza, F.; et al. Poly(ethylene Glycol)-Containing Hydrogel Surfaces for Antifouling Applications in Marine and Freshwater Environments. Biomacromolecules 2008, 9, 2775–2783.
    [84] Holmlin, R. E.; Chen, X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M. Zwitterionic SAMs That Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir 2001, 17, 2841–2850.
    [85] T. Morisaku, J. Watanabe, T. Konno, M. Takai, K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis, Polymer (Guildf). 49 (2008) 4652–4657.
    [86] T. Goda, J. Watanabe, M. Takai, K. Ishihara, Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker, Polymer (Guildf). 47 (2006) 1390–1396.
    [87] E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir. 17 (2001) 5605–5620.
    [88] L. Li, S. Chen, S. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption, J. Biomater. Sci. Polym. Ed. 18 (2007) 1415–1427.
    [89] K. Ishihara, T. Ueda, N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes, Polym. J. 22 (1990) 355–360.
    [90] Y. Iwasaki, K. Ishihara, Phosphorylcholine-containing polymers for biomedical applications, Anal. Bioanal. Chem. 381 (2005) 534–546.
    [91] Y. Chang, S. Chen, Z. Zhang, S. Jiang, Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines, Langmuir. 22 (2006) 2222–2226.
    [92] Z. Zhang, S. Chen, Y. Chang, S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings., J. Phys. Chem. B. 110 (2006) 10799–804.
    [93] Z. Zhang, T. Chao, S. Chen, S. Jiang, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides, Langmuir. 22 (2006) 10072–10077.
    [94] J. Ladd, Z. Zhang, S. Chen, J.C. Hower, S. Jiang, Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma, Biomacromolecules. 9 (2008) 1357–1361.
    [95] M.-C. Sin, S.-H. Chen, Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes, Polym. J. 46 (2014) 436–443.
    [96] N.Y. Kostina, C. Rodriguez-Emmenegger, M. Houska, E. Brynda, J. Michálek, Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth)acrylamides, Biomacromolecules. 13 (2012) 4164–4170.
    [97] L. Wu, J. Jasinski, S. Krishnan, Carboxybetaine, Sulfobetaine, and Cationic Block Copolymer Coatings : A Comparison of the Surface Properties and Antibiofouling Behavior, J. Appl. Polym. Sci. 124 (2012) 2154–2170.
    [98] Y. Chang, W.-J. Chang, Y.-J. Shih, T.-C. Wei, G.-H. Hsiue, Zwitterionic sulfobetaine-grafted poly(VINYLIDENE FLUORIDE) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization, ACS Appl. Mater. Interfaces. 3 (2011) 1228–1237.
    [99] M.-C. Sin, Y.-M. Sun, Y. Chang, Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control., ACS Appl. Mater. Interfaces. 6 (2014) 861–73. [100] Y. Chang, W.-Y. Chen, W. Yandi, Y.-J. Shih, W.-L. Chu, Y.-L. Liu, et al., Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide), Biomacromolecules. 10 (2009) 2092–2100.
    [101] Y. Chang, W. Yandi, W.-Y. Chen, Y.-J. Shih, C.-C. Yang, Y. Chang, et al., Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine., Biomacromolecules. 11 (2010) 1101–10. [102] H.S. Sundaram, J.-R. Ella-Menye, N.D. Brault, Q. Shao, S. Jiang, Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation, Chem. Sci. 5 (2014) 200–205.
    [103] Y.-N. Chou, Y. Chang, T.-C. Wen, Applying Thermosettable Zwitterionic Copolymers as General Fouling-Resistant and Thermal-Tolerant Biomaterial Interfaces, ACS Appl. Mater. Interfaces. 7 (2015) 10096–10107.
    [104] Z. Cao, N. Brault, H. Xue, A. Keefe, S. Jiang, Manipulating sticky and non-sticky properties in a single material., Angew. Chem. Int. Ed. Engl. 50 (2011) 6102–4.
    [105] Z. Cao, L. Mi, J. Mendiola, J.-R. Ella-Menye, L. Zhang, H. Xue, et al., Reversibly Switching the Function of a Surface between Attacking and Defending against Bacteria, Angew. Chemie. 124 (2012) 2656–2659.
    [106] Y. Chang, Y.-J. Shih, C.-J. Lai, H.-H. Kung, S. Jiang, Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood, Adv. Funct. Mater. 23 (2013) 1100–1110.
    [107] Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 2008;9:1357-61.
    [108] Yang W, Xue H, Li W, Zhang JL, Jiang SY. Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir 2009;25:11911-6.
    [109] Vaisocherova H, Yang W, Zhang Z, Cao ZQ, Cheng G, Piliarik M, Homola J, Jiang SY. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 2008;80:7894-901.
    [110] von Muhlen MG, Brault ND, Knudsen SM, Jiang SY, Manalis SR. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem 2010;82:1905-10.
    [111] M. M. The physiological mechanisms of haemostasis -Blood Platelets. Hologramme Ed: Neuilly-sur-Seine, 1988
    [112] Ratner BD. Blood compatibility 2000 - Foreword. J Biomat Sci-Polym E 2000;11(11):1105-1106.
    [113] Hanson S. R. Biomaterials Science. San Diego, CA,: Elsevier, Academic, 2004.
    [114] Ratner BD. Blood compatibility - a perspective. J Biomat Sci-Polym E 2000;11(11):1107-1119.
    [115] Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interfac 1998 Feb;74:69-117.
    [116] Goertz MP, Houston JE, Zhu XY. Hydrophilicity and the viscosity of interfacial water. Langmuir 2007 May 8;23(10):5491-5497.
    [117] Blockmans D, Deckmyn H, Vermylen J. Platelet Activation. Blood Rev 1995 Sep;9(3):143-156.
    [118] Holme PA, Solum NO, Brosstad F, Pedersen T, Kveine M. Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thromb Haemostasis 1998 Feb;79(2):389-394.
    [119] Kaelble DH, Moacanin J. Surface-Energy Analysis of Bioadhesion. Polymer 1977;18(5):475-482.
    [120] Ratner BD. The Blood Compatibility Catastrophe. J Biomed Mater Res 1993 Mar;27(3):283-287.
    [121] Llanos GR, Sefton MV. Immobilization of Poly(Ethylene Glycol) onto a Poly(Vinyl Alcohol) Hydrogel .2. Evaluation of Thrombogenicity. J Biomed Mater Res 1993 Nov;27(11):1383-1391.
    [122] Schmaier AH. Contact activation: A revision. Thromb Haemostasis 1997 Jul;78(1):101-107.
    [123] Ward CA, Stanga D. Biological-Activity of Fibrinogen Adsorbed on Synthetic Materials. J Colloid Interf Sci 1986 Dec;114(2):323-329.
    [124] Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004 Nov;25(26):5681-5703.
    [125] Zhang Z, Chao T, Chen SF, Jiang SY. Superlow fouling sulfobetaine and
    carboxybetaine polymers on glass slides. Langmuir 2006 Nov 21;22(24):10072-10077.
    [126] Zhang Z, Zhang M, Chen SF, Horbetta TA, Ratner BD, Jiang SY. Blood
    compatibility of surfaces with superlow protein adsorption. Biomaterials 2008
    Nov;29(32):4285-4291.
    [127]12. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY. Hemocompatible
    Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to
    Nonspecific Plasma Protein Fouling. Langmuir 2010 Mar 2;26(5):3522-3530.
    [128] Chang Y, Chen WY, Yandi W, Shih YJ, Chu WL, Liu YL, et al. Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly(N-isopropyl acrylamide). Biomacromolecules 2009 Aug;10(8):2092-2100
    [129] Shih YJ, Chang Y. Tunable Blood Compatibility of Polysulfobetaine from
    Controllable Molecular-Weight Dependence of Zwitterionic Nonfouling Nature in
    Aqueous Solution. Langmuir 2010 Nov 16;26(22):17286-17294.
    [130] Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY. A Highly
    stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for
    plasma protein repulsion. Langmuir 2008 May 20;24(10):5453-5458.
    [131] Yang W, Chen SF, Cheng G, Vaisocherova H, Xue H, Li W, et al. Film
    thickness dependence of protein adsorption from blood serum and plasma onto
    poly(sulfobetaine)-grafted surfaces. Langmuir 2008 Sep 2;24(17):9211-9214.
    [132] Chang Y, Chen SF, Yu QM, Zhang Z, Bernards M, Jiang SY. Development of
    biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules 2007
    Jan;8(1):122-127.
    [133] Schulz DN, Peiffer DG, Agarwal PK, Larabee J, Kaladas JJ, Soni L, et al. Phase-Behavior and Solution Properties of Sulfobetaine Polymers. Polymer 1986 Nov;27(11):1734-1742.
    [134] Mary P, Bendejacq DD, Labeau MP, Dupuis P. Reconciling low- and high-
    salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B 2007 Jul
    12;111(27):7767-7777.
    [135] Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 2004 Dec;29(12):1173-1222.
    [136] Chilkoti A, Dreher MR, Meyer DE, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliver Rev 2002 Sep 13;54(5):613-630.
    [137] Pelton R. Temperature-sensitive aqueous microgels. Adv Colloid Interfac 2000 Feb 1;85(1):1-33.
    [138]Schild HG. Poly (N-Isopropylacrylamide) - Experiment, Theory and Application.
    Prog Polym Sci 1992;17(2):163-249.
    [139]Schilli CM, Zhang MF, Rizzardo E, Thang SH, Chong YK, Edwards K, et al. A
    new double-responsive block copolymer synthesized via RAFT polymerization:
    Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 2004 Oct
    19;37(21):7861-7866.
    [140] Sershen SR, Westcott SL, Halas NJ, West JL. Temperature-sensitive polymer-
    nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res
    2000 Sep 5;51(3):293-298.
    [141] Stile RA, Burghardt WR, Healy KE. Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 1999 Nov 2;32(22):7370-7379.
    [142] Uchida K, Sakai K, Ito E, Kwon OH, Kikuchi A, Yamato M, et al. Temperature-dependent modulation of blood platelet movement and morphology on poly(N-isopropylacrylamide)-grafted surfaces. Biomaterials 2000 May;21(9):923-929.
    [143]Arotcarena M, Heise B, Ishaya S, Laschewsky A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double
    thermoresponsivity. J Am Chem Soc 2002 Apr 10;124(14):3787-3793.
    [144] Butun V, Liu S, Weaver JVM, Bories-Azeau X, Cai Y, Armes SP. A brief review of 'schizophrenic' block copolymers. React Funct Polym 2006 Jan;66(1):157-165.
    [145] Maeda Y, Mochiduki H, I I. Hydration changes during thermosensitive
    association of a block copolymer consisting of LCST and UCST blocks. Macromol
    Rapid Comm 2004 Jul 21;25(14):1330-1334.
    [146] Virtanen J, Arotcarena M, Heise B, Ishaya S, Laschewsky A, Tenhu H. Dissolution and aggregation of a poly(NIPA-block-sulfobetaine) copolymer in water and saline aqueous solutions. Langmuir 2002 Jul 9;18(14):5360-5365.
    [147] Weaver JVM, Armes SP, Butun V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer. Chem Commun
    2002(18):2122-2123.
    [148] Maeda Y, Yamamoto H, I I. The association of tetraalkylammonium ions with
    poly(vinyl methyl ether) in water and its effect on phase-separation behavior as studied
    by micro-Raman spectroscopy. Macromol Rapid Comm 2004 Mar 19;25(6):720-723.
    [149] Cheng G, Zhang Z, Chen SF, Bryers JD, Jiang SY. Inhibition of bacterial
    adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007
    Oct;28(29):4192-4199.
    [150] Zhang Z, Finlay JA, Wang LF, Gao Y, Callow JA, Callow ME, et al.
    Polysulfobetaine-Grafted Surfaces as Environmentally Benign Ultralow Fouling
    Marine Coatings. Langmuir 2009 Dec 1;25(23):13516-13521.
    [151] Y. Chang YJS, C. J. Lai, H. H. Kung, S. Jiang. Ion-pair anchoring of self-
    assembled zwitterionic copolymer surfaces with highly controlled blood compatibility.
    Adv Funct Mater 2012; DOI: 10.1002/adfm201201386.
    [152] Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for
    biomedical applications. Anal Bioanal Chem 2005 Feb;381(3):534-546.
    [153] Chen SF, Jiang SY. A new avenue to nonfouling materials. Adv Mater 2008
    Jan 18;20(2):335.
    [154] Jiang SY, Cao ZQ. Ultralow-Fouling, Functionalizable, and Hydrolyzable
    Zwitterionic Materials and Their Derivatives for Biological Applications. Adv Mater
    2010 Mar 5;22(9):920-932.
    [155] Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N.
    Hemocompatibility of Human Whole-Blood on Polymers with a Phospholipid Polar
    Group and Its Mechanism. J Biomed Mater Res 1992 Dec;26(12):1543-1552.
    [156] Nakabayashi N, Williams DF. Preparation of non-thrombogenic materials
    using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials 2003 Jun;24(13):2431-
    2435.
    [157] Feng W, Brash JL, Zhu SP. Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion. Biomaterials 2006 Feb;27(6):847-855.
    [158] Chang Y, Chen SF, Zhang Z, Jiang SY. Highly protein-resistant coatings from
    well-defined diblock copolymers containing sulfobetaines. Langmuir 2006 Feb
    28;22(5):2222-2226.
    [159] Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 2008 May;9(5):1357-1361.
    [160] Georgiev GS, Karnenska EB, Vassileva ED, Kamenova IP, Georgieva VT,
    Iliev SB, et al. Self-assembly, anti polyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 2006 Apr;7(4):1329-1334.
    [161] Prime KL, Whitesides GM. Adsorption of Proteins onto Surfaces Containing End-Attached Oligo(Ethylene Oxide) - a Model System Using Self-Assembled Monolayers. J Am Chem Soc 1993 Nov 17;115(23):10714-10721.
    [162] Holmlin RE, Chen XX, Chapman RG, Takayama S, Whitesides GM.
    Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer.
    Langmuir 2001 May 1;17(9):2841-2850.
    [163] Tegoulia VA, Cooper SL. Leukocyte adhesion on model surfaces under flow:
    Effects of surface chemistry, protein adsorption, and shear rate. J Biomed Mater Res
    2000 Jun 5;50(3):291-301.
    [164] Ishihara K, Shibata N, Tanaka S, Iwasaki Y, Kurosaki T, Nakabayashi N.
    Improved blood compatibility of segmented polyurethane by polymeric additives
    having phospholipid polar group .2. Dispersion state of the polymeric additive and
    protein adsorption on the surface. J Biomed Mater Res 1996 Nov;32(3):401-408.
    [165] Yuan YL, Zang XP, Ai F, Zhou J, Shen J, Lin SC. Grafting sulfobetaine
    monomer onto silicone surface to improve haemocompatibility. Polym Int 2004
    Jan;53(1):121-126.
    [166] Feng W, Zhu SP, Ishihara K, Brash JL. Adsorption of fibrinogen and
    lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via
    surface-initiated atom transfer radical polymerization. Langmuir 2005 Jun
    21;21(13):5980-5987.
    [167] Iwasaki Y, Shimakata K, Morimoto N, Kurita K. Hydrogel-like elastic
    membrane consisting of semi-interpenetrating polymer networks based on a
    phosphorylcholine polymer and a segmented polyurethane. J Polym Sci Pol Chem 2003
    Jan 1;41(1):68-75.
    [168] Zwaal, R. F. A. & Schroit, A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89, 1121–1132 (1997).
    [169] Long, S. F., Clarke, S., Davies, M. C., Lewis, A. L., Hanlon, G. W. & Lloyd, A. W.Controlled biological response on blends of a phosphorylcholine-based copolymer with poly(butyl methacrylate). Biomaterials 24, 4115–4121 (2003).
    [170] Kadoma, Y., Nakabayashi, N., Masuhara, E. & Yamauchi, J. Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu 35, 423–427 (1978).
    [170] Ishihara, K., Tsuji, T., Kurosaki, K. & Nakabayashi, N. Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side chain and poly(n-butyl methacrylate) backbone. J. Biomed. Mater. Res. 28, 225–232 (1994).
    [171] Watanabe, J., Eriguchi, T. & Ishihara, K. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers. Biomacromolecules 3, 1375–1383 (2002).
    [172] Iwasaki, Y. & Ishihara, K. Cell membrane-inspired phospholipid polymers for develop-ing medical devices with excellent biointerfaces. Sci. Technol. Adv. Mater. 13, 64–101 (2012).
    [173] Vaisocherova H, Yang W, Zhang Z, Cao ZQ, Cheng G, Piliarik M, Homola J, Jiang SY. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 2008;80:7894-901.
    [174] von Muhlen MG, Brault ND, Knudsen SM, Jiang SY, Manalis SR. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem 2010;82:1905-10.
    [175] F.J. Xu, K.G. Neoh, E.T. Kang, Bioactive surfaces and biomaterials via atom transfer radical polymerization, Prog. Polym. Sci. 34 (2009) 719–761.
    [176] C.J. Huang, N.D. Brault, Y. Li, Q. Yu, S. Jiang, Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities, Adv. Mater. 24 (2012) 1834–1837.
    [177] G. Li, G. Cheng, H. Xue, S. Chen, F. Zhang, S. Jiang, Ultra low fouling zwitterionic polymers with a biomimetic adhesive group, Biomaterials. 29 (2008) 4592–4597.
    [178] C. Gao, G. Li, H. Xue, W. Yang, F. Zhang, S. Jiang, Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages, Biomaterials. 31 (2010) 1486–1492. [179] H.S. Sundaram, X. Han, A.K. Nowinski, J.R. Ella-Menye, C. Wimbish, P. Marek, et al., One-Step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces, ACS Appl. Mater. Interfaces. 6 (2014) 6664–6671.
    [181] Li GZ, Cheng G, Xue H, Chen SF, Zhang FB, Jiang SY. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 2008;29:4592-7.
    [182] Sundaram HS, Han X, Nowinski AK, Brault ND, Li YT, Ella-Menye JR, Amoaka KA, Cook KE, Marek P, Senecal K, Jiang SY. Achieving one-step surface coating of highly hydrophilic poly(carboxybetaine methacrylate) polymers on hydrophobic and hydrophilic surfaces. Adv Mater Interfaces 2014;1.
    [183] Huang CJ, Brault ND, Li YT, Yu QM, Jiang SY. Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities. Adv Mater 2012;24:1834-7.
    [184] Xie LY, Hong F, He CX, Ma CF, Liu JH, Zhang GZ, Wu C. Coatings with a self-generating hydrogel surface for antifouling. Polymer 2011;52:3738-44.
    [185] Butruk B, Trzaskowski M, Ciach T. Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction. Mat Sci Eng C-Mater 2012;32:1601-9.
    [186] Rao L, Zhou HH, Li T, Li CY, Duan YWY. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes. Acta Biomaterialia 2012;8:2233-42.
    [187] Faxalv L, Ekblad T, Liedberg B, Lindahl TL. Blood compatibility of photografted hydrogel coatings. Acta Biomater 2010;6:2599-608.
    [188] Toma M, Jonas U, Mateescu A, Knoll W, Dostalek J. Active Control of SPR by Thermoresponsive hydrogels for biosensor applications. J Phys Chem C 2013;117:11705-12.
    [189] Tokarev I, Minko S. Stimuli-responsive hydrogel thin films. Soft Matter 2009;5:511-24.
    [190] Larsson A, Ekblad T, Andersson O, Liedberg B. Photografted poly(ethylene glycol) matrix for affinity interaction studies. Biomacromolecules 2007;8:287-95.
    [191] Larsson A, Liedberg B. Poly(ethylene glycol) gradient for biochip development. Langmuir 2007;23:11319-25.
    [192] Ekblad T, Bergstroem G, Ederth T, Conlan SL, Mutton R, Clare AS, Wang S, Liu YL, Zhao Q, D'Souza F, Donnelly GT, Willemsen PR, Pettitt ME, Callow ME, Callow JA, Liedberg B. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules 2008;9:2775-83.
    [193] Masson JF, Battaglia TM, Davidson MJ, Kim YC, Prakash AMC, Beaudoin S, Booksh KS. Biocompatible polymers for antibody support on gold surfaces. Talanta 2005;67:918-25.
    [194] Wang Y, Brunsen A, Jonas U, Dostalek J, Knoll W. Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix. Anal Chem 2009;81:9625-32.
    [195] Lewis AL, Tolhurst LA, Stratford PW. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation. Biomaterials 2002;23:1697-706.
    [196] Li Y, Liu CM, Yang JY, Gao YH, Li XS, Que GH, Lu JR. Anti-biofouling properties of amphiphilic phosphorylcholine polymer films. Colloid Surface B 2011;85:125-30.
    [197] Tang Y, Lu JR, Lewis AL, Vick TA, Stratford PW. Structural effects on swelling of thin phosphorylcholine polymer films. Macromolecules 2002;35:3955-64.
    [198] Yang W, Bai T, Carr LR, Keefe AJ, Xu JJ, Xue H, Irvin CA, Chen SF, Wang J, Jiang SY. The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials 2012;33:7945-51.
    [199] Zhang L, Cao ZQ, Bai T, Carr L, Ella-Menye JR, Irvin C, Ratner BD, Jiang SY. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 2013;31:553-6.
    [200] Bai T, Sun F, Zhang L, Sinclair A, Liu SJ, Ella-Menye JR, Zheng Y, Jiang SY. Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. Angew Chem Int Edit 2014;53:12729-34.
    [201] Nguyen AT, Baggerman J, Paulusse JMJ, van Rijn CJM, Zuilhof H. Stable
    Protein-Repellent Zwitterionic Polymer Brushes Grafted from Silicon Nitride.
    Langmuir 2011 Mar 15;27(6):2587-2594.
    [202] Chang Y, Chang WJ, Shih YJ, Wei TC, Hsiue GH. Zwitterionic Sulfobetaine-
    Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood
    Compatibility via Atmospheric Plasma-Induced Surface Copolymerization. Acs Appl
    Mater Inter 2011 Apr;3(4):1228-1237.
    [203] Chang Y, Chang Y, Higuchi A, Shih YJ, Li PT, Chen WY, et al. Bioadhesive
    Control of Plasma Proteins and Blood Cells from Umbilical Cord Blood onto the
    Interface Grafted with Zwitterionic Polymer Brushes. Langmuir 2012 Mar
    6;28(9):4309-4317.
    [204] Kuo WH, Wang MJ, Chien HW, Wei TC, Lee C, Tsai WB. Surface
    Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce
    Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation.
    Biomacromolecules 2011 Dec;12(12):4348-4356.
    [205] Li GZ, Cheng G, Xue H, Chen SF, Zhang FB, Jiang SY. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 2008 Dec;29(35):4592-4597.
    [206] Turk H, Haag R, Alban S. Dendritic polyglycerol sulfates as new heparin
    analogues and potent inhibitors of the complement system. Bioconjugate Chem 2004
    Jan-Feb;15(1):162-167.
    [207] Ishihara K, Oshida H, Endo Y, Watanabe A, Ueda T, Nakabayashi N. Effects
    of Phospholipid Adsorption on Nonthrombogenicity of Polymer with Phospholipid
    Polar Group. J Biomed Mater Res 1993 Oct;27(10):1309-1314.
    [208] Azzaroni O, Brown AA, Huck WTS. UCST wetting transitions of
    polyzwitterionic brushes driven by self-association. Angew Chem Int Edit
    2006;45(11):1770-1774.
    [209] Zhang Z, Chen SF, Chang Y, Jiang SY. Surface grafted sulfobetaine polymers
    via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B
    2006 Jun 8;110(22):10799-10804.
    [210] Zhang Z, Chen SF, Jiang SY. Dual-functional biomimetic materials:
    Nonfouling poly(carboxybetaine) with active functional groups for protein
    immobilization. Biomacromolecules 2006 Dec 11;7(12):3311-3315.
    [211] Zhang Z, Vaisocherova H, Cheng G, Yang W, Xue H, Jiang SY. Nonfouling
    Behavior of Polycarboxybetaine-Grafted Surfaces: Structural and Environmental
    Effects. Biomacromolecules 2008 Oct;9(10):2686-2692.
    [212] Iwasaki Y, Nakabayashi N, Nakatani M, Mihara T, Kurita K, Ishihara K.
    Competitive adsorption between phospholipid and plasma protein on a phospholipid
    polymer surface. J Biomat Sci-Polym E 1999;10(5):513-529.
    [213] Ishihara K, Iwasaki Y, Ebihara S, Shindo Y, Nakabayashi N. Photoinduced
    graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene
    membrane surface for obtaining blood cell adhesion resistance. Colloid Surface B 2000
    Oct;18(3-4):325-335.
    [214] Ratner BDH, A. S.; Schoen, F. D.; Lemons, J. E. . Biomaterials Science, .
    Amsterdam: Elsevier, 2004.
    [215] Pan DX, Kang GZ, Zhu ZW, Liu YJ. Experimental study on uniaxial time-
    dependent ratcheting of a polyetherimide polymer. J Zhejiang Univ-Sc A 2010
    Oct;11(10):804-810.
    [216] Gao CL, Li GZ, Xue H, Yang W, Zhang FB, Jiang SY. Functionalizable and
    ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages.
    Biomaterials 2010 Mar;31(7):1486-1492.
    [217] Ratner, B. D. J. Dental Educ. 2001, 65, 1340.
    [218] Dang, C.V., Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle, 2010. 9(19): p. 3884-6.
    [219] DeBerardinis, R.J., et al., Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A, 2007. 104(49): p. 19345-50.
    [220] Noch, E. and K. Khalili, Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol Ther, 2009. 8(19): p. 1791-7.
    [221] Keusgen, M., Biosensors: new approaches in drug discovery. Naturwissenschaften, 2002. 89(10): p. 433-44.
    [222] Arya, S.K., et al., Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal Chim Acta, 2012. 737: p. 1-21.
    [223] Wang, J., Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron, 2006. 21(10): p. 1887-92.
    [224] Marchione, M., Cancer's growing burden: the high cost of care., in Associated Press2012
    [225] Zhou, G.J.e.a., Reagentless Chemiluminescence Biosensor for
    Determination of Hydrogen Peroxide Based on the Immobilization of Horseradish Peroxidase on Biocompatible Chitosan Membrane. Sensors and Actuators B: Chemical, 2002. 81(2-3): p. 334-339.
    [226] Castillo, J., et al., Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase and sweet potato peroxidase. Biosens Bioelectron, 2003. 18(5-6): p. 705-14.
    [227] Kotanen, C.N., et al., Implantable enzyme amperometric biosensors. Biosens Bioelectron, 2012. 35(1): p. 14-26.
    [228] Vaddiraju, S., et al., Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron, 2010. 25(7): p. 1553-65.
    [229] Thevenot, D.R., et al., Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron, 2001. 16(1-2): p. 121-31.
    [230] Raba, J.M., H., Glucose Oxidase as an Analytical Reagent. Analytical Chemistry, 1995. 25(1): p. 1-42.
    [231] O'Neill, R.D., et al., Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate. Biosens Bioelectron, 2004. 19(11): p. 1521-8.
    [232] Wilson, G.S. and R. Gifford, Biosensors for real-time in vivo measurements. Biosens Bioelectron, 2005. 20(12): p. 2388-403.
    [233] De Benedetto, G.E.F., F.; Zambonin, P.G., One-step fabrication of a bienzyme glucose sensor based on glucose oxidase and peroxidase immobilized onto a poly(pyrrole) modified glassy carbon electrode. Biosensors and Bioelectronics, 1996. 11(10): p. 1001-1008.
    [234] Lindgren, A., et al., Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer. Biosens Bioelectron, 2000. 15(9-10): p. 491-7.
    [235] Gajovic, N., et al., Operation of a miniature redox hydrogel-based pyruvate sensor in undiluted deoxygenated calf serum. Anal Chem, 2000. 72(13): p. 2963-8.
    [236] Fabre, B.B., S.; Cespuglio, G., Voltammetric detection of NO in the rat brain with an electronic conducting polymer and Nafion® bilayer-coated carbon fibre electrode.
    Journal of Electroanalytical Chemistry, 1997. 426(1-2): p. 75-83.
    [237] Gajovic, N.H., K.; Warsinke, A.; Schuhmann, W.; Scheller, F.W., A Pyruvate Oxidase Electrode Based on an Electrochemically Deposited Redox Polymer. Electroanalysis, 1999. 11: p. 1377-1383.
    [238] Clark, R.A.Z., S.E.; Ewing, A.G., Electrochemistry in neuronal microenvironments
    Electroanalytical Chemistry, 1998. 20: p. 227-294.
    [239] Bharathi, S. and M. Nogami, A glucose biosensor based on electrodeposited
    biocomposites of gold nanoparticles and glucose oxidase enzyme. Analyst, 2001.
    126(11): p. 1919-22.
    [240] Somasundrum, M.T., M; Kirtikara, K., H2O2 from an oxidase enzyme can be detected cathodically using metal microparticles dispersed in a polymeric film electrode. Journal of Electroanalytical Chemistry, 1996. 407(1-2): p. 247-251.
    [241] Welch, C.M., et al., Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem, 2005. 382(1): p. 12-21.
    [242] Mateo, C.P., J.; Fernandez-Lorente, G.; Guisan, J.; Fernandez-Lafuente, R.,
    Improvement of enzyme activity, stability and selectivity via immobilization
    techniques. Enzyme and Microbial Technology, 2007. 40(6): p. 1451-1463.
    [243] El Nashar, R.M., Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode. Talanta, 2012. 96: p. 161-7.
    [244] Ibupoto, Z.H., et al., Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors (Basel), 2012. 12(3): p. 2456-66.
    [245] Unnikrishnan, B., S. Palanisamy, and S.M. Chen, A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens Bioelectron, 2013. 39(1): p. 70-5.
    [246] Wisniewski, N. and M. Reichert, Methods for reducing biosensor membrane biofouling. Colloids Surf B Biointerfaces, 2000. 18(3-4): p. 197-219.
    [247] Lindner, E.T., K.; Pungor, E., Definition and determination of response time of ion selective electrodes. Pure Applied Chemistry, 1986. 58(3): p. 469-479.
    [248] R. Ananthanarayan.; Paniker, CK. J. Text Book of Microbiology, 7th Edition; Orient Longman Private: Chennai, 2006.
    [249] Liu, X.; Sun, K.; Wu, Z.; Lu, J.; Song, B.; Tong, W.; Shi, X.; Chen, H. Facile Synthesis of Thermally Stable Poly( N -Vinylpyrrolidone)- Modified Gold Surfaces by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir 2012, 28, 9451–9459.
    [250] Telford, A. M.; James, M.; Meagher, L.; Neto, C. Thermally Cross-Linked PNVP Films as Antifouling Coatings for Biomedical Applications. ACS Appl. Mater. Interfaces 2010, 2, 2399–2408.
    [251] Y.-J. Shih, Y. Chang, Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution, Langmuir. 26 (2010) 17286–17294.
    [252] Chang, Y.; Yandi, W.; Chen, W.-Y.; Shih, Y.-J.; Yang, C.-C.; Chang, Y.; Ling, Q.-D.; Higuchi, A. Tunable Bioadhesive Copolymer Hydrogels of Thermoresponsive poly(N-Isopropyl Acrylamide) Containing Zwitterionic Polysulfobetaine. Biomacromolecules 2010, 11, 1101–1110.
    [253] Balakrishnan, B.; Mohanty, M.; Umashankar, P. R.; Jayakrishnan, A. Evaluation of an in Situ Forming Hydrogel Wound Dressing Based on Oxidized Alginate and Gelatin. Biomaterials 2005, 26, 6335–6342.
    [254] J W Costerton, K J Cheng, G G Geesey, T I Ladd, J C Nickel, M Dasgupta, and T. J. M. Bacterial Biofilms In Natljre And Disease. Annu. Rev. Microbiol. 1987, 41, 435–464.
    [255] Chapman, R. G.; Ostuni, E.; Liang, M. N.; Meluleni, G.; Kim, E.; Yan, L.; Pier, G.; Warren, H. S.; Whitesides, G. M. 271 Polymeric Thin Films That Resist the Adsorption of Proteins and the Adhesion of Bacteria. Langmuir 2001, 17, 1225–1233.
    [256] M. Niwano, Ultraviolet ozone oxidation of Si surface studied by photoemission
    and surface infrared spectroscopy, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 10 (1992) 3171.
    [257] D.E. King, Oxidation of gold by ultraviolet light and ozone at 25 °C, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 13 (1995) 1247–1253.
    [258] R.J. Klein, D. a. Fischer, J.L. Lenhart, Systematic oxidation of polystyrene by
    ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and
    contact angle, Langmuir. 24 (2008) 8187–8197.
    [259] M. Li, K.-G. Neoh, L.-Q. Xu, R. Wang, E.-T. Kang, T. Lau, et al., Surface Modification of Silicone for Biomedical Applications Requiring Long Term Antibacterial, Antifouling and Haemocompatible Properties., Langmuir. 28 (2012) 16408–16422.
    [260] K.H. Chae, Y.M. Jang, Y.H. Kim, O.J. Sohn, J. Il Rhee, Anti-fouling epoxy coatings for optical biosensor application based on phosphorylcholine, Sensors Actuators, B Chem. 124 (2007) 153–160.
    [261] W. Huang, Y. Zhou, D. Yan, Direct synthesis of amphiphilic block copolymers
    from glycidyl methacrylate and poly(ethylene glycol) by cationic ring-opening polymerization and supramolecular self-assembly thereof, J. Polym. Sci. Part A Polym. Chem. 43 (2005) 2038–2047.
    [262] Y. Liu, W. Wang, W. Hu, Z. Lu, X. Zhou, C.M. Li, Highly sensitive poly[glycidyl
    methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device., Biomed. Microdevices. 13 (2011) 769–77.
    [263] Y.G. Ko, Y.H. Kim, K.D. Park, H.J. Lee, W.K. Lee, H.D. Park, et al.,
    Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by
    ozone oxidation, Biomaterials. 22 (2001) 2115–2123.
    [264] W. Hu, X. Li, G. He, Z. Zhang, X. Zheng, P. Li, et al., Sensitive competitive
    immunoassay of multiple mycotoxins with non-fouling antigen microarray, Biosens.
    Bioelectron. 50 (2013) 338–344.
    [265] C.-J. Huang, Y.-S. Chen, Y. Chang, Counterion-Activated Nanoactuator:
    Reversibly Switchable Killing/Releasing Bacteria on Polycation Brushes, ACS Appl.
    Mater. Interfaces. 7 (2015) 2415–2423.
    [266] Y.-W. Chen, Y. Chang, R.-H. Lee, W.-T. Li, A. Chinnathambi, S.A. Alharbi, et
    al., Adjustable Bioadhesive Control of PEGylated Hyperbranch Brushes on Polystyrene
    Microplate Interface for the Improved Sensitivity of Human Blood Typing., Langmuir.
    30 (2014) 9139–46.
    [267] Prime KL, Whitesides GM. Self-Assembled Organic Monolayers - Model systems for studying adsorption of proteins at surfaces. Science 1991;252:1164-7.
    [268] Langer R. Perspectives: Drug delivery - Drugs on target. Science 2001;293:58-9.
    [269] Shapiro MG, Westmeyer GG, Romero PA, Szablowski JO, Kuster B, Shah A, Otey CR, Langer R, Arnold FH, Jasanoff A. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol 2010;28:264-270.
    [270] Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 1990;22:355-60.
    [271] Jiang SY, Cao ZQ. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 2010;22:920-32.
    [272] Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem 2005;381:534-46.
    [273] Wu L, Jasinski J, Krishnan S. Carboxybetaine, sulfobetaine, and cationic block copolymer coatings: A comparison of the surface properties and antibiofouling behavior. J Appl Polym Sci 2012;124:2154-70.
    [274] Sun F, Ella-Menye JR, Galvan DD, Bai T, Hung HC, Chou YN, Zhang P, Jiang SY, Yu QM. Stealth surface modification of surface-enhanced raman scattering substrates for sensitive and accurate detection in protein solutions. Acs Nano 2015;9:2668-76.
    [275] Bai T, Liu SJ, Sun F, Sinclair A, Zhang L, Shao Q, Jiang SY. Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials 2014;35:3926-33.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE