簡易檢索 / 詳目顯示

研究生: 駱澤
Lo, Tse
論文名稱: 藍相液晶彈性體薄膜之光致動彎曲研究與應用
Study on photobending of blue phase liquid crystal elastomer films and their applications
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 116
中文關鍵詞: 藍相液晶液晶彈性體偶氮苯光致異構化薄膜仿生應用
外文關鍵詞: blue phase liquid crystal, liquid crystal elastomer, blue phase elastomer, azobenzene, photoisomerization, biomimetic
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究專注於製作和探討可光致動彎曲的藍相液晶彈性體薄膜,並深入分析其 形變機制。實驗首先透過偏光顯微鏡、反射頻譜和科索圖的量測,確定藍相的存在 範圍及其相態種類,進而選取特定溫度進行光聚合反應製作藍相液晶彈性體薄膜。 摻混偶氮苯材料的藍相液晶彈性體薄膜一經紫外光照射,分子的排列方式及晶格間 距將由於偶氮苯分子由長棒狀變為彎曲狀而受到影響,導致晶格膨脹。但薄膜彎曲 與否,須取決於薄膜頂面和底面間的晶格常數是否存在差異,而這與聚合時所選的 溫度息息相關。透過穿透式電子顯微鏡觀察,發現聚合於不同溫度的薄膜內部結構 具有顯著差異。聚合於 55.6 ℃的薄膜,各區域的晶格均勻,紫外光照射下不會發生 彎曲。聚合於 54.7 ℃下的薄膜,其頂面和底面的晶格大小存在明顯差異,導致在紫 外光照射下產生不均勻的膨脹,因而使薄膜彎曲形變,且此時薄膜的彎曲方向與光 源方向無關。此外,光強度和照射時間對彎曲角度有顯著影響,光強度越大,薄膜 彎曲速度越快且穩定的角度越大,最多可達到80度的大幅彎曲,且過程僅需十秒。 實驗的最後演示了一種仿生設計,模仿含羞草在外部刺激下的閉合反應,展示其在 智能材料和仿生機械領域的應用潛力。

    This study focuses on the fabrication of blue phase liquid crystal elastomer (BPLCE) films and the investigation of the photoactuated bending of the film, with an in-depth analysis of the deformation mechanism. Initially, the existence range and phase types of the blue phase were determined using polarized optical microscopy, reflection spectra, and Kossel diagram measurements. Subsequently, three specific temperatures of 54.7°C and 55.6 °C where the slopes of the BPLC reflection peak wavelength with temperature are respectively positive, zero and negative were selected for photopolymerization to prepare BPLCE films, and their photobending properties were studied and compared. Experimental results show that the photobending of the film is attributed to the difference in lattice constants of the upper and lower layers of the film after the photopolymerization. Films polymerized at 55.6 °C show uniform lattice regions and no bending under UV light exposure. In contrast, films polymerized at 54.7 °C exhibit a clear difference in lattice size between the upper and lower layers, resulting in nonuniform expansion and subsequent bending deformation upon UV light exposure.
    Furthermore, the bending angle is significantly influenced by the light intensity and exposure time. Higher light intensity results in faster bending speeds and a larger final bending angle, reaching 80° in just 10 seconds. This study finally demonstrates a bionic design that mimics the closing/opening response of Mimosa pudica with/without external stimulation, demonstrating the potential application of BPLCE films in smart materials and bionic machinery. This research provides valuable insights for the development of new smart materials based on BPLCEs.

    摘要 I 參考文獻 XII 誌謝 XIV 目錄 XV 圖目錄 XVIII 表目錄 XXIV 第一章 緒論 1 第二章 液晶介紹 3 2.1 液晶起源 3 2.2 液晶的分類 4 2.2.1 溶致型液晶 4 2.2.2 熱致型液晶 5 2.3 液晶物理特性 10 2.3.1 光學異向性(雙折射性) 11 2.3.2 介電異向性 14 2.3.3 溫度對液晶的影響 17 2.3.4 連續彈性體理論 18 第三章 藍相液晶 20 3.1 藍相液晶簡介 20 3.2 藍相液晶之結構與理論 21 3.2.1 雙扭圓柱體 21 3.2.2 藍相液晶之缺陷理論 22 3.3 藍相液晶之光學特性 24 3.3.1 選擇性布拉格反射特性 24 3.3.2 科索圖案 26 3.3.3 藍相液晶之光學均向性 29 3.3.4 電場引致克爾效應 30 3.3.5 藍相液晶之外加電場效應 31 3.4 聚合物穩固藍相液晶 33 第四章 液晶高分子與偶氮苯材料 35 4.1 液晶高分子材料 35 4.1.1 線性液晶聚合物 35 4.1.2 液晶高分子網絡 37 4.1.3 液晶彈性體 38 4.1.4 玻璃轉化溫度 39 4.2 高分子聚合反應 40 4.2.1 逐步增長聚合 40 4.2.2 鏈增長聚合 41 4.3 偶氮苯材料 43 4.3.1 光致變色效應 43 4.4 摻有偶氮苯材料之液晶彈性體 48 4.4.1 光致形變液晶彈性體薄膜之形變效應 48 4.4.2 液晶彈性體薄膜光致動器之應用 49 第五章 樣品製作與實驗架設 55 5.1 實驗材料介紹 55 5.1.1 液晶高分子單體 55 5.1.2 液晶交聯劑 56 5.1.3 手性分子交聯劑 56 5.1.4 偶氮苯交聯劑 57 5.1.5 光起始劑 58 5.2 實驗樣品和薄膜製備 58 5.2.1 玻璃清潔與配向 58 5.2.2 製備玻璃空樣品 60 5.2.3 藍相液晶彈性體薄膜製備 61 5.2.4 TEM試片製備 62 5.3 實驗光路架設 63 5.3.1 偏光顯微影像觀察與反射頻譜量測之光路架設 63 5.3.2 Kossel diagram量測之光路架設 64 5.3.3 藍相液晶薄膜樣品製備之光聚合光路架設 64 第六章 實驗結果與討論 65 6.1 藍相液晶單體樣品 65 6.2 藍相液晶彈性體薄膜之基本性質和光響應 68 6.2.1 光學性質 68 6.2.2 光引致藍相彈性體薄膜彎曲形變70 6.2.3 藍相彈性體薄膜回復可逆響應 73 6.3 藍相液晶彈性體薄膜光響應結果之探討 74 6.3.1 溫控平台造成之溫度差 74 6.3.2 藍相彈性體薄膜之微觀結構與彎曲機制探討 76 6.4 藍相彈性體薄膜之仿生應用 82 第七章 結論與未來展望 84 參考文獻 85

    1. J. D. Lin, SY Huang, H. S. Wang, S. H. Lin, T. S. Mo, C. T. Horng, H. C. Yeh, L. J. Chen, HL Lin, C. R. Lee, "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell," Opt. Express 22, 2947929492 (2014).
    2. J. A. Martínez-González, Y. Zhou, M. Rahimi, E. Bukusoglu, N. L. Abbott, J. J. de Pablo, "Blue-phase liquid crystal droplets," Proc. Natl. Acad. Sci. U.S.A. 112, 1319513200 (2015).
    3. E. Bukusoglu, X. Wang, J. A. Martinez-Gonzalez, J. J. de Pablo, N. L. Abbott, "Stimuli-responsive cubosomes formed from blue phase liquid crystals," Adv. Mater. 27 (2015).
    4. L. Rao, Z. Ge, S. T. Wu, S. H. Lee, "Low voltage blue-phase liquid crystal displays,"Appl. Phys. Lett. 95 (2009).
    5. S. Serak, N. Tabiryan, R. Vergara, T. J. White, R. A. Vaia, T. J. Bunning, "Liquid crystalline polymer cantilever oscillators fueled by light," Soft Matter 6, 779783 (2010).
    6. M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett, T. Ikeda, "Photomobile polymer materials: towards light‐driven plastic motors," Angew. Chem. 47, 49864988 (2008).
    7. Y. S. Zhang, Z. W. Lin, H. C. Yeh, C. M. Liang, J. D. Lin, P. C. Yang, C. R. Lee., "Self‐Steering Lasing System Enabled by Flexible Photo‐Actuators with Sandwich Structure," Adv. Funct. Mater. 33, 2210657 (2023).
    8. D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, B. R. Ratna, "Liquid crystal elastomers with mechanical properties of a muscle," Macromolecules 34, 58685875 (2001).
    9. Y. Liu, B. Xu, S. Sun, J. Wei, L. Wu, Y. Yu, "Humidity-and photo-induced mechanical actuation of cross-linked liquid crystal polymers," Adv. Mater 29, 1604792 (2017).
    10. J. Yang, J. Liu, B. Guan, W. He, Z. Yang, J. Wang, T. Ikeda, L. Jiang, "Fabrication and photonic applications of large-domain blue phase films," J. Mater. Chem. C 7, 94609466 (2019).
    11. K. R. Schlafmann, and T. J. White, "Retention and deformation of the blue phases in liquid crystalline elastomers," Nat. Commun. 12, 4916 (2021).
    12. M. P. Da Cunha, M. G. Debije, and A. P. Schenning, "Bioinspired light-driven soft robots based on liquid crystal polymers," Chem. Soc. Rev. 49, 65686578 (2020).
    13. S. Chauhan, S. Mukherjee, A. Varanytsia, C. Tsung Hou, L. Zou, L. C. Chien, "Efficient random lasing in topologically directed assemblies of blue-phase liquid crystal microspheres," Opt. Mater. Express 10, 20302044 (2020).
    14. M. Fallah-Darrehchi, P. Zahedi, P. Harirchi, M. Abdouss., "Performance of Liquid Crystalline Elastomers on Biological Cell Response: A Review," ACS Appl. Polym. Mater. 5, 10761091 (2023).
    15. Z. Zhang, X. Yang, Y. Zhao, F. Ye, L. Shang, "Liquid crystal materials for biomedical applications," Adv. Mater. 35, 2300220 (2023).
    16. L. Wang, D. Chen, K. Jiang, G. Shen, "New insights and perspectives into biological materials for flexible electronics," Chem. Soc. Rev. 46, 67646815 (2017).
    17. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, "Polymer-stabilized liquid crystal blue phases," Nat. Mater. 1, 6468 (2002).
    18. F. Castles, F. V. Day, S. M. Morris, D H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, H. J. Coles, "Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications," Nat. Mater. 11, 599603 (2012).
    19. Y. Geng, R. Kizhakidathazhath, and J. P. Lagerwall, "Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles," Nat. Mater. 21, 14411447 (2022).
    20. F. Reinitzer, "Beiträge zur kenntniss des cholesterins," Monatsh. Chem. 9, 421-441 (1888).
    21. O. Lehmann, "Über fliessende krystalle," Z. Phys. Chem. 4, 462-472 (1889).
    22. H. Kawamoto, "The history of liquid-crystal displays," Proc. IEEE 90, 460500 (2002).
    23. 福田敦夫, "S. Chandrasekhar, Liquid Crystals, Cambridge University press, Cambridge and New York, 1992," 日本物理学会誌 49, 587-588 (1994).
    24. P. G. De Gennes, and J. Prost, The physics of liquid crystals (Oxford university press, 1993).
    25. C. Bahr, and H. S. Kitzerow, Chirality in liquid crystals (Springer, 2001).
    26. D. Andrienko, "Introduction to liquid crystals," J. Mol. Liq 267, 520541 (2018).
    27. V. V. Belyaev, "The viscosity of nematic liquid crystals," Russ. Chem. Rev. 58, 917 (1989).
    28. B. Bahadur, Liquid Crystal-Applications And Uses (Volume 1) (World scientific, 1990).
    29. A. Yariv, and P. Yeh, Photonics: optical electronics in modern communications (Oxford university press, 2007).
    30. B. E. Saleh, and M. C. Teich, Fundamentals of photonics (john Wiley & sons, 2019).
    31. E. Hecht, Optics (Pearson Education India, 2012).
    32. J. Li, S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys. 96, 19-24 (2004).
    33. J. Li, C. H. Wen, S. Gauza, R. Lu, S. T. Wu, "Refractive indices of liquid crystals for display applications," Journal of Display Technology 1, 51 (2005).
    34. F. C. Frank, "I. Liquid crystals. On the theory of liquid crystals,"Faraday Discuss. 25, 19-28 (1958).
    35. H. Kikuchi, "Liquid crystalline blue phases," Liquid crystalline functional assemblies and their supramolecular structures, 99117 (2008).
    36. T. Isomura, H. Yoshida, A. Fujii, M. Ozaki, "Laser emission from a photopolymerized cholesteric blue phase II," Molecular Crystals and Liquid Crystals 516, 197201 (2010).
    37. H. Coles, and S. Morris, "Liquid-crystal lasers," Nat. Photonics 4, 676685 (2010).
    38. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, "Laser emission from a polymer‐stabilized liquid‐crystalline blue phase," Adv. Mater. 18, 4851 (2006).
    39. H. Y. Liu, C. T. Wang, C. Y. Hsu, T. H. Lin, J. H. Liu, "Optically tuneable blue phase photonic band gaps,"Appl. Phys. Lett. 96, 121103 (2010).
    40. A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, "Trans-cis isomerization and the blue phases," Phys. Rev. E 71, 051705 (2005).
    41. H. J. Coles, and M. N. Pivnenko, "Liquid crystal ‘blue phases’ with a wide temperature range," Nature 436, 997-1000 (2005).
    42. S. Y. Lu, and L. C. Chien, "Electrically switched color with polymer-stabilized blue-phase liquid crystals," Opt. Lett. 35, 562-564 (2010).
    43. A. Yoshizawa, "Liquid crystal oligomers exhibiting a blue phase," Molecular Crystals and Liquid Crystals 516, 99-106 (2010).
    44. A. Saupe, "On molecular structure and physical properties of thermotropic liquid crystals," Molecular Crystals and Liquid Crystals 7, 59-74 (1969).
    45. T. H. Lin, C. W. Chen, and Q. Li, "Self-organized 3D photonic superstructure: Blue phase liquid crystal," Anisotropic Nanomaterials: Preparation, Properties, and Applications, 337-378 (2015).
    46. A. Yoshizawa III, "Amorphous Blue Phase III: Structure, Materials, and Properties. Materials 2024, 17, 1291," (2024).
    47. S. Meiboom, J. P. Sethna, P. W. Anderson, W. F. Brinkman, "Theory of the blue phase of cholesteric liquid crystals," Phys. Rev. Lett. 46, 1216 (1981).
    48. W. Fenrenbach, A. Stieb, and G. Meier, "Liquid Crystals Bibliography for 1981," Taylor & Francis, (1985).
    49. J. Cohen, "The blue phase of cholesteric liquid crystals," http://guava. physics. uiuc. edu/~ nigel/courses/569/Essays_2002/files/cohen. pdf (2007).
    50. M. D. McGehee, and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid‐state lasers," Adv. Mater. 12, 1655-1668 (2000).
    51. J. D. Lin, T. Y. Wang, T. S. Mo, S. Y. Huang, C. R. Lee, "Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase," Sci. Rep. 6, 30407 (2016).
    52. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, W. Y. Li "Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,"Appl. Phys. Lett. 96 (2010).
    53. L. Rao, Z. Ge, and S. T. Wu, "Viewing angle controllable displays with a blue-phase liquid crystal cell," Opt. Express 18, 3143-3148 (2010).
    54. Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, "Large electro‐optic Kerr effect in polymer‐stabilized liquid‐crystalline blue phases," Adv. Mater. 17, 96-98 (2005).
    55. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L Rao, S. T. Wu "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,"Appl. Phys. Lett. 96 (2010).
    56. H. Yoshida, S. Yabu, H. Tone, Y. Kawata, H. Kikuchi, M. Ozaki, "Secondary electro-optic effect in liquid crystalline cholesteric blue phases," Opt. Mater. Express 4, 960-968 (2014).
    57. H. S. Kitzerow, "Blue phases come of age: a review," Emerging liquid crystal technologies IV 7232, 36-49 (2009).
    58. A. A. Collyer, Liquid crystal polymers: from structures to applications (Springer Science & Business Media, 2012).
    59. J. Wang, A. Jákli, and J. L. West, "Morphology tuning of electrospun liquid crystal/polymer fibers," ChemPhysChem 17, 3080-3085 (2016).
    60. T. J. White, and D. J. Broer, "Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers," Nat. Mater. 14, 1087-1098 (2015).
    61. S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, "Novel side-chain liquid crystalline polyester architecture for reversible optical storage," Macromolecules 28, 2172-2183 (1995).
    62. L. Zhou, S. Liu, X. Miao, P. Xie, N. Sun, Z. Xu, T. Zhong, L. Zhang, Y. Shen, "Advancements and Applications of Liquid Crystal/Polymer Composite Films," Mater. Lett. 5, 2760-2775 (2023).
    63. K. M. Herbert, H. E. Fowler, J. M. McCracken, K. R. Schlafmann, J. A. Koch, T. J. White, "Synthesis and alignment of liquid crystalline elastomers," Nat. Rev. Mater. 7, 23-38 (2022).
    64. H. Stutz, K. H. Illers, and J. Mertes, "A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers," J. Polym. Sci. Pol. Phys. 28, 1483-1498 (1990).
    65. S. M. Munzert, Coordination of dynamic metallosupramolecular polymers (MEPEs) (Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany), 2018).
    66. M. P. Stevens, Polym. Chem. (Oxford university press New York, 1990).
    67. G. Odian, Principles of polymerization (John Wiley & Sons, 2004).
    68. H. Bouas-Laurent, and H. Dürr, "Organic photochromism (IUPAC technical report)," Pure Appl. Chem. 73, 639-665 (2001).
    69. R. Dong, B. Zhu, Y. Zhou, X. Zhu, "Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light," Polym. Chem. 4, 912-915 (2013).
    70. L. J. Chen, J. D. Lin, and C. R. Lee, "An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser," J. Mater. Chem. C 2, 4388-4394 (2014).
    71. T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, A. Kanazawa, "Anisotropic bending and unbending behavior of azobenzene liquid‐crystalline gels by light exposure," Adv. Mater. 15, 201-205 (2003).
    72. X. Lu, H. Zhang, G. Fei, B. Yu, X. Tong, H. Xia, Y. Zhao, "Liquid‐crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation," Adv. Mater. 30, 1706597 (2018).
    73. M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett, T. Ikeda, "Photomobile polymer materials: towards light‐driven plastic motors," Angew. Chem. 120, 5064-5066 (2008).
    74. M. Chen, X. Xing, Z. Liu, Y. Zhu, H. Liu, Y. Yu, F. Cheng, "Photodeformable polymer material: towards light-driven micropump applications," Appl. Phys. A 100, 39-43 (2010).
    75. J. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, Y. Yu, "Photocontrol of fluid slugs in liquid crystal polymer microactuators," Nature 537, 179-184 (2016).
    76. 林緯峻, "光響應藍相液晶彈性體薄膜之研究," in 光電科學與工程學系(國立成功大學, 2023), p. 84.
    77. Y. S. Zhang, S. A. Jiang, J. D.. Lin, P. C. Yang, C. R. Lee, "Stretchable freestanding films of 3D nanocrystalline blue phase elastomer and their tunable applications," Adv. Opt. Mater. 9, 2001427 (2021).
    78. E. Otón, P. Morawiak, K. Gaładyk, J. M. Otón, W. Piecek, "Fast self-assembly of macroscopic blue phase 3D photonic crystals," Opt. Express 28, 18202-18211 (2020).
    79. S. Tanaka, H. Yoshida, Y. Kawata, R. Kuwahara, R. Nishi, M. Ozaki, "Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy," Sci. Rep. 5, 16180 (2015).
    80. S. Lin, S. Ma, K. Chen, Y. Zhang, Z. Lin, Y. Liang, L. Ren, "A humidity-driven film with fast response and continuous rolling locomotion," Chem. Eng. Sci., 153294 (2024).

    無法下載圖示 校內:2029-08-24公開
    校外:2029-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE