| 研究生: |
鄭仕煒 Jheng, Shih-Wei |
|---|---|
| 論文名稱: |
應用階層線性模型於探討網路論壇評論之有用性 Applying hierarchical linear model to explore the helpfulness of online forum reviewers |
| 指導教授: |
李昇暾
Li, Sheng Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 階層線性模型 、線上評論 、評論有用性 、隱含狄利克雷分布 |
| 外文關鍵詞: | hierarchical linear model, online review, review helpfulness, LDA |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從網路邁入Web2.0 的時代之後,網路平台的蓬勃發展日新月異,資訊設備也逐漸普及化,家家戶戶從桌上型電腦、筆記型電腦、平板電腦乃至於人手一支的行動智慧型手機,使用者在網路上留下的產品使用建議以及意見與評價數量龐大,這些訊息不乏其有建設性的創意構想,如何過濾並使得這些有效建議成為公司開發產品的依據是一個重要課題。
網路上充斥著大量可瀏覽參考的文字資料,如何找出可信任的資源是一個很重要的問題。在各色評論當中首先關注的就是產品的星等、評論的有用性等可以快速讓自己獲取需求資訊的重要標籤,本研究欲探討這些在評論中得到的資訊之間的關係,擷取網路上的使用者生成資料(user-generated content)並結合文字探勘的LDA(Latent Dirichlet Allocation)技術分析亞馬遜(Amazon)電子商務平台上的客戶評論資料,並得到數據化的資料後再結合階層線性模型(Hierarchical linear model),從資料之間的層次構面去進行相關性分析,找出更貼近消費者需求的主題,從而使得企業能夠以更主動了解既有客群的潛在需求。
Since the era of Web 2.0, the rapid development of the Internet platform has become increasingly popular, and information devices have become popular. Every household has a mobile phone from desktop computers, notebook computers, tablets, and even human hands. The user's recommendation on the use of the product on the Internet and the large number of opinions and evaluations are numerous. These messages are not lacking in constructive creative ideas. How to filter and make these effective suggestions become the basis for the company to develop products is an important issue.
The Internet is full of texts that can be viewed and referenced. How to find trusted resources is an important issue. The first concern in the various comments is the star of the product, the helpfulness of the comment, etc., which can quickly get the important information of the demand information. The research wants to explore the relationship between the information obtained in the comments, and draw on the network. User-generated content and LDA (Latent Dirichlet Allocation) technology for text analysis to analyze customer reviews on Amazon's e-commerce platform, and to obtain data and then combine HLM (hierarchical linear models), from the hierarchical structure of the data to conduct correlation analysis to find a topic closer to the needs of consumers, so that companies can more actively understand the potential needs
of existing customers.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.Journal of machine Learning research, 3(Jan), 993-1022.
Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for
the “helpfulness” of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521. doi:https://doi.org/10.1016/j.dss.2010.11.009
Cohen, J. (1988). Statistical power analysis for the behaviors science.(2nd).
New Jersey: Laurence Erlbaum Associates, Publishers, Hillsdale.
Ghose, A., & Ipeirotis, P. G. (2011). Estimating the Helpfulness and
Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498-1512. doi:10.1109/TKDE.2010.188
Goldhaber, D. D., & Brewer, D. J. (1996). Why don't schools and teachers
seem to matter? Assessing the impact of unobservables on educational productivity.
Guo, Y., & Barnes, S. (2011). Purchase behavior in virtual worlds: An
empirical investigation in Second Life. Information & Management, 48(7), 303-312. doi:https://doi.org/10.1016/j.im.2011.07.004
Iosub, D., Laniado, D., Castillo, C., Morell, M. F., & Kaltenbrunner, A.
(2014). Emotions under discussion: Gender, status and communication in online collaboration. PloS one, 9(8), e104880.
Jeong, E., & Jang, S. (2011). Restaurant experiences triggering positive
electronic word-of-mouth (eWOM) motivations. International Journal of Hospitality Management, 30(2), 356-366. doi:https://doi.org/10.1016/j.ijhm.2010.08.005
Kim, S. G., & Kang, J. (2018). Analyzing the discriminative attributes of
products using text mining focused on cosmetic reviews. Information Processing & Management, 54(6), 938-957. doi:https://doi.org/10.1016/j.ipm.2018.06.003
Ku, Y. C., Wei, C. P., & Hsiao, H. W. (2012). To whom should I listen?
Finding reputable reviewers in opinion-sharing communities. Decision Support Systems, 53(3), 534-542. doi:10.1016/j.dss.2012.03.003
Liu, X., Schuckert, M., & Law, R. (2018). Utilitarianism and knowledge
growth during status seeking: Evidence from text mining of online reviews. Tourism Management, 66, 38-46. doi:https://doi.org/10.1016/j.tourman.2017.11.005
Martínez-Torres, M. R., Arenas-Marquez, F. J., Olmedilla, M., & Toral, S.
L. (2018). Identifying the features of reputable users in eWOM communities by using Particle Swarm Optimization. Technological Forecasting and Social Change, 133, 220-228. doi:https://doi.org/10.1016/j.techfore.2018.04.017
Martínez-Torres, M. R., Díaz-Fernández, M. C., Toral, S. L., & Barrero, F.
(2015). The moderating role of prior experience in technological acceptance models for ubiquitous computing services in urban environments. Technological Forecasting and Social Change, 91, 146-160. doi:https://doi.org/10.1016/j.techfore.2014.02.004
Parmentier, G., & Mangematin, V. (2014). Orchestrating innovation with
user communities in the creative industries. Technological Forecasting and Social Change, 83, 40-53. doi:https://doi.org/10.1016/j.techfore.2013.03.007
Pentina, I., Prybutok, V., & Zhang, X. (2008). The role of virtual
communities as shopping. Reference Groups. Journal of Electronic Commerce Research, 9(2), 114-123.
Qazi, A., Shah Syed, K. B., Raj, R. G., Cambria, E., Tahir, M., &
Alghazzawi, D. (2016). A concept-level approach to the analysis of online review helpfulness. Computers in Human Behavior, 58, 75-81. doi:https://doi.org/10.1016/j.chb.2015.12.028
Rheingold, H. (2000). The virtual community: Homesteading on the
electronic frontier: MIT press.
Salehan, M., & Kim, D. J. (2016). Predicting the performance of online
consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40. doi:https://doi.org/10.1016/j.dss.2015.10.006
Sarker, A., Ginn, R., Nikfarjam, A., O’Connor, K., Smith, K., Jayaraman,
S., . . . Gonzalez, G. (2015). Utilizing social media data for pharmacovigilance: a review. Journal of biomedical informatics, 54, 202-212.
Tussyadiah, I. P., & Fesenmaier, D. R. (2008). Marketing Places Through
First‐Person Stories—an Analysis of Pennsylvania Roadtripper Blog. Journal of Travel & Tourism Marketing, 25(3-4), 299-311. doi:10.1080/10548400802508358
Wang, W. M., Li, Z., Tian, Z. G., Wang, J. W., & Cheng, M. N. (2018).
Extracting and summarizing affective features and responses from online product descriptions and reviews: A Kansei text mining approach. Engineering Applications of Artificial Intelligence,73, 149-162. doi:https://doi.org/10.1016/j.engappai.2018.05.005
Weathers, D., Swain, S. D., & Grover, V. (2015). Can online product reviews
be more helpful? Examining characteristics of information content by product type.DecisionSupportSystems, 79, 12-23.
doi:https://doi.org/10.1016/j.dss.2015.07.009
Zhang, Y.-J., Jin, Y.-L., & Zhu, T.-T. (2018). The health effects of
individual characteristics and environmental factors in China: Evidence from the hierarchical linear model. Journal of Cleaner Production, 194, 554-563. doi:https://doi.org/10.1016/j.jclepro.2018.05.163
張文姬. (2013). 應用語言特徵於分類具聲譽之網路論壇評論者. (碩
士), 國立成功大學, 台南市.
校內:2024-07-01公開