簡易檢索 / 詳目顯示

研究生: 謝慶存
Hsieh, Ching-Tsun
論文名稱: 百葉窗鰭管式熱交換器之三維熱液動分析及最佳化
3-D Thermal-Hydraulic Analysis and Optimization of Louver Finned-Tube Heat Exchanger
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 201
中文關鍵詞: 三維流場熱液動性能百葉窗型鰭片散熱器計算流體力學田口方法最佳化設計
外文關鍵詞: 3-D, Heat Transfer, Louver Fin, Variable Louver Angle, Radiator, CFD, Taguchi Method, Parametric design, Optimum parameters
相關次數: 點閱:149下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 百葉窗型鰭片兼具面積擴展、增加擾動及斷續建立邊界層等增強熱傳效果之優點,廣泛應用在實際氣冷式熱交換器,本文是利用數值方法和紊流模式,探討三維百葉窗型熱交換器之流場與熱傳現象,並延伸百葉窗型鰭片幾何形狀影響三維流場的觀念,模擬汽車內水箱護罩及保險桿至水箱之間的引擎室流場,分析其對水箱冷卻性能之影響,進而研究影響百葉窗型鰭管式熱交換器熱液動性能之各種幾何參數,且利用田口方法尋求百葉窗鰭管式熱交換器之最佳化設計。
    首先探討三維連續變化百葉窗角度熱交換器之熱流現象,在文中設計五種個案,四種連續變化百葉窗角度:case A、case B、case C、case D及固定角度: case E,(case A (+ 2°) 的前4片百葉窗角度為20° 、22°、 24°、26°遞增2°連續變化,經過轉向區後4片則與前4片對稱向下,百葉窗角度為26°、24°、22°、20°遞減2°連續變化,case B (+ 4°) 前4片百葉窗角度則為20°、 24°、 28°、 32°遞增4°連續變化,後4片對稱向下遞減4°為32°、 28°、 24°、20°,case C (-2°)則為26°、24°、22°、20°、20°、22°、24°、26°,case D(-4°)則為32°、28°、24°、20°、20°、24°、28°、32°,case E固定百葉窗角度均為20°),分析在各種雷諾數下,比較其對熱交換器之熱液動性能的影響,結果發現4種個案之熱傳性能因子j均比固定角度case E熱傳性能因子jo為高,不同個案與固定角度case E之熱傳性能因子比值j/jo和摩擦因子f/fo的變化。其中case B (+4°)在Re=500時有最高值,j/jo提高到118%, case D (-4°),case A (+2°), case C (-2°)也分別提高115%,109%和107%,摩擦因子f/f0以Re=200時最大,分別提高到119%,118%, 110%, 及109%。若與平板型鰭片比較其面積縮減率(1-A/Aref),則case B (+4 °)最高可達25.5%,case D(-4 °),case A (+2 °), case C (-2 °)也分別達23.4%,20.2%和17.5%,而固定角度case E則小於14%,可以證明連續變化百葉窗角度可以改善百葉窗鰭片型熱交換器熱性能。
    其次是探討汽車內水箱護罩及保險桿至水箱之間的引擎室流場,並分析其對水箱冷卻性能之影響。汽車之水箱護罩及保險桿空氣流入口也是百葉窗幾何形狀,文中以紊流之流動模式來模擬引擎室的空氣流動情形,建立接近實際汽車形體的真實模型及網格點,並有系統地變更空氣流經水箱護罩及保險桿之入口角度(α = -15° ~ 15°, β= -5°~15°)、位置及大小(通風開口率=25%~33%)等各種參數進行數值模擬。分析結果發現:(1)當水箱護罩空氣入口角度α向下變化至-15°時,空氣流量相對於α=0°時增加5.1%,熱傳量也增加4.4%。(2)保險桿空氣入口角度β向上增加時,熱傳量隨β持續增加,在β=15°時,相對於β=0° 時增加4.8%,空氣流量變化率也隨β增加而變大,但在β=10°時有最大值。 (3)同時變更保險桿、水箱護罩之空氣入口角度及開口位置,可以大幅改善水箱熱傳性能,在α= -15°及β= +15°時,熱傳量改變率提高至12.6 %。(4)增加保險桿及水箱護罩之開口面積,當通風開口率增加至33.0 %時,空氣流量改變率則增加48.1 %,熱傳量改變率也增加34.1%。
    於百葉窗鰭管式熱交換器熱液動分析與最佳化設計部分是探討三維百葉窗鰭管式熱交換器之流場與熱傳現象,進而分析影響其性能之參數,並尋求最佳化設計,本文計算模式與前人實驗比較,發現兩者很吻合,熱傳因子j值平均誤差在3.13%以內,證實可以成功的模擬實際熱交換器的熱液動情形,大部分熱傳因子j值和壓降因子f值都隨雷諾數增加而變小,但在雷諾數小於1700時,j值卻隨雷諾數減少而變小,且鰭片節距(Fp)越小越明顯;由參數分析可以發現,在所有參數中以橫向管節距(Pt)影響熱交換器之性能幅度最大,高達40.85%,其次是鰭片節距(Fp)為20.95%,管外徑(dc) 為11.29%再居次,至於鰭片厚度(δ) 和百葉窗節距(Lp) 兩者都在10%以下,其餘百葉窗角(θ) 、縱向管節距 (Pl)及縱向管排數(N)影響幅度均不大;經過田口方法所得之參數最佳水準組合之面積縮減率1-A/Aplain在低雷諾數時隨雷諾數增加而變大,在雷諾數 Re=1000 時,1-A/Aplain可以達到最高值44%,在高雷諾數時則隨雷諾數增加而變小,再與其他組合比較都是最高者,即在本研究所設計範圍內,可以找到熱交換器之最佳性能曲線之參數組合。

    In the present study, the 3-D thermal-hydraulic analysis for louver fin heat exchangers and engine room (between the grille and radiator) are investigated with numerical method and turbulence model. Moreover, a three-dimensional numerical geometric optimization study to maximize the total heat transfer rate for louver-fin with round tubes of heat exchangers.
    Firstly, successively increased or decreased louver angle patterns are proposed and 3-D numerical analysis on heat and fluid flow are carried out. Five different cases of successively increased or decreased louver angles (+2°,+4°,-2°,-4°, and uniform angle 20°) are investigated: case A (20°,22°,24°,26°,26°,24°,22°,20°), case B (20°,24°,28°,32°,32°,28°,24°,20°), case C (26°,24°,22°,20°,20°,22°,24°,26°), case D (32°,28°,24°,20°,20°,24°, 28°,32°), case E (uniform angle 20°) . For case A (+2°), case B (+4°), case C (-2°) and D (-4°), the maximum heat transfer improvement interpreted by j/j0 are 109%, 118%, 107% and 115%, and the corresponding friction factor ratio f/f0 are 110%, 119%, 108% and 116%, respectively, where j/j0 and f/f0 are the Colburn factor ratio and friction factor ratio between successively variable louver angles and uniform angle, respectively. It is also shown that the maximum area reduction for case B can reach up to25.5% compared to a plain fin surface. The present results indicated the successively variable louver angle patterns applied in heat exchangers could effectively enhance the heat transfer performance.
    Secondly, a numerical analysis of the three-dimensional heat transfer and fluid flow for vehicle cooling system was developed. The flow field of the engine room between the grille and radiator was analyzed. The results show that, as the airflow inlet grille angle α is varied from 15° to -15°, the air flow rate compared with α = 0°(horizontal) is changed from -11.9 % to +5.1 %; while the heat flux from radiator is changed from -9.2 % to +4.4 %. When the airflow inlet bumper angles β is varied from -5° to +15°, the heat flux from radiator compared with β = 0° (horizontal) is increased up to +4.4%. When the airflow inlet grille angle α = -15° and bumper grill angles β = +15°, its air flow rates and heat flux compared with (α = 0°, β = 0° ) can be increased to +9.5% and + 7.5%, respectively. The results indicated that the optimal angles for cooling efficiency are existed.
    Thirdly, a comparative study of effects of fin pitch, fin collar outside diameter, transverse tube pitch, longitudinal tube pitch, number of longitudinal tube rows, louver height, louver angle, fin thickness, and louver pitch on fin performance of louver fin-and-tube heat exchanger is conducted by numerical method. The parameters of louver fin-and-tube heat exchangers are optimized by the Taguchi method. Eighteen kinds of models are made by compounding levels on each factor, and the heat transfer and flow characteristics of each model are analyzed. The results show that fin collar outside diameter, transverse tube pitch and fin pitch, are the main factors that influence significantly the thermal hydraulic performance of the heat exchanger. Therefore, these three factors are considered as the main factors for an optimum design of a heat exchanger. The optimal conditions are acquired, and the reproducibility of the results is verified by analytical results.

    中文摘要 I 英文摘要 V 目錄 IX 表目錄 XI 圖目錄 XII 符號說明 XVII 第一章 緒論 1 1.1 前言 1 1.2文獻回顧 6 1.3研究動機與目的 11 第二章 連續變化百葉窗角度之熱交換器熱液動分析 29 2.1理論分析 29 2.2格點建立與數值分析 39 2.3結果與討論 50 第三章 引擎室流場及冷卻系統模擬分析 69 3.1理論分析 69 3.2建立格點與數值分析理論分析 73 3.3模擬參數設計與變更 74 3.4收斂條件與格點測試 76 3.5結果與討論 77 第四章 百葉窗鰭管式熱交換器熱液動分析與最佳化設計 117 4.1理論分析 117 4.2建立格點與數值分析 119 4.3熱傳係數之計算 120 4.4流場分析 123 4.5參數分析 124 4.6田口方法簡介 132 4.7田口方法探討百葉窗鰭管式熱交換器最佳化 137 4.8結果與討論 144 第五章 結論 189 參考文獻 193 自述 201

    參考文獻
    1. Shah, R.K., Classification of heat exchangers, in Heat Exchangers: Thermal-Hydraulic Fundamentals and Design,( S. Kakac¸ , A. E. Bergles, and F. Mayinger, eds.) Hemisphere Publishing, Washington, DC, 1981.
    2. 王啟川, 熱交換器設計(二版), 五南出版社, 2005.
    3. Kays, W.M., London, A.L., Compact Heat Exchangers, third ed., McGraw-Hill, 1984.
    4. Webb, R.L., Principles of Enhanced Heat Transfer, John Wiley and Sons, New York. , 1994.
    5. Bergles, A.E., Heat Transfer Enhancement - The Encouragement and Accommodation of High Heat Fluxes, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, pp.1907-1919, 1997.
    6. Webb, R.L., and Jung, S.H., Air side performance of enhanced brazed aluminum heat exchangers, ASHRAE Transactions 98, Pt.2, pp.391-401, 1992.
    7. Wang, C.C., Tao, W.H., Chang, C.J., An investigation of the airside performance of the slit fin-and-tube heat exchangers, Int. J. Refrig. Vol.22, pp.595-603, 1999.
    8. Chang, Y.J., Hsu K.C., Lin Y.T., and Wang, C.C., A generalized friction correlation for louver fin geometry, Int. J. Heat Mass Transfer Vol.43, pp.2237-2243, 2000.
    9. Wang, C.C., Jang, J.Y. and Chiou, N.F. Chiou, A heat transfer and friction correlation for wavy fin and tube heat exchangers, Int. J. Heat Mass Transfer Vol.42, pp.1919–1924, 1999.
    10. Kay, W.M., and London, A.L., Trans ASME November, 1075-1085, 1950.
    11. Beauvais, F.N., An aerodynamic look at automotive radiators, SAE paper No.650470, 1965.
    12. Davenport, C.L., Heat transfer and fluid flow in louvred triangular ducts, Ph.D. thesis, CNAA, Lanchester Polytechnic, 1980.
    13. Davenport, C.L., Correlations for heat transfer and flow friction characteristics of louvred fin, AIChE Symposium series, pp.19-27, 1983.
    14. Achaichia, A. and Cowell, T.A., Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces, Experimental Thermal and Fluid Science, Vol.1, pp.147-157, 1988.
    15. Kajino, M. and Hiramatsu, M., Research and development of automotive heat exchangers, Heat Transfer in High Technology and Power Engineering, Yang, W.J. and Mori, Y. ed., Hemisphere, Washington, DC, pp.420-432, 1987.
    16. Webb, R.L., and Trauger, P.A., Flow structure in the louvered fin heat exchanger geometry, Experimental thermal and fluid science, Vol.40, No.3, pp.205-217, 1991.
    17. Sabnoun, A. and Webb, R.L., prediction of heat transfer and friction for louvre fin geometry, International Journal of Heat Mass Transfer, Vol. 114, pp.893-900, 1992.
    18. Rugh, J.P., Pearson, J.T., Ramadhyani, , A study of very compact heat exchanger used for passenger compartment heating in automobiles, in Compact Heat Echangers for Power and Process Industries, ASME Symposium Series, ASME, New York, HTD-Vol.201, pp.15-24, 1992.
    19. Sunden, B. and Svantesson, J., Thermal hydraulic performance of new multilouvered fins, in Proceedings of the 9th International Heat Transfer Conf., Vol.14-HX-16, pp.91-96, 1990.
    20. Sunden, B. and Svantesson, J., Correlation of j- and f-Factors for multilouvered heat transfer surfaces, in Proceedings of the 3rd UK National Heat Transfer Conf., pp.805-811, 1992.
    21. Chang, Y.J., Wang, C.C., and Chang, W.R., Heat transfer and flow characteristics of automotive brazed aluminum heat exchangers, ASHRAE Transactions 100, Pt.2, pp.643-652, 1994.
    22. Webb, R.L., Chang, Y.J., and Wang, C.C. , Heat transfer and friction correlation for the louver fin geometry, International journal heat and mass transfer, in Proceedings of the Vechicle Thermal Management System, Vol.2, pp.533-541, 1995.
    23. Chang, Y.J., and Wang, C.C., Air side performance of brazed aluminum heat exchangers, Journal of Enhanced Heat Transfer, Vol. 3, pp.15-28, 1996.
    24. Chang, Y.J., and Wang, C.C., A generalized heat transfer correlation for louver fin geometry, International Journal Heat and Mass Transfer, Vol.40, No.3, pp.533-544, 1997.
    25. Wang, C.C., Chang, Y.P., Chi, K.Y., Chang, Y.J., A study of non-redirection louver fin-and-tube heat exchanger, Proc. Instn. Mech engrs, Vol.212 part C, 1998.
    26. Wang, C.C., Chi, K.Y., Chang, Y.J., An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers, International journal of heat and mass transfer, Vol.41, 1998.
    27. Chang, Y.J. , Wang, C.C. and Lin, S.P., Heat transfer and friction correlation for compact louvered fin and tube heat exchangers, Int. J. Heat Mass Transfer Vol.42, pp.1945–1956, 1999.
    28. Wang, C.C., Lin Y.T., Lee, C.J., Heat and momentum transfer for compact louvered fin and tube heat exchangers in wet conditions, Int. J. Heat Mass Transfer Vol.43, pp.3443–3452, 2000.
    29. Wang, C.C., Lee, W.S., Sheu, W.J., A comparative study of compact enhanced fin and tube heat exchangers, Int. J. Heat Mass Transfer Vol.44 , pp.3565–3573, 2001.
    30. Tafti, D.K., Wang, G. , and, Lin W., Flow transition in a multilouvered fin array, International journal of heat and mass transfer, Vol. 43, pp.901-919., 2000.
    31. Suga, K., Aoki, H. and Shinagawa, T., Numerical analysis on two-dimensional flow and heat transfer of louvered fins using overlaid grids, JSME International Journal Series Ⅱ, Vol.33, No.1, pp.122-127, 1990.
    32. Suga, K., and Aoki, H., Numerical study on heat transfer and pressure drop in multilouvered fins, Proceedings of ASME/JSME Thermal Engineering Yoint conference, Vol.4, pp.361-368, 1991.
    33. Hiramatsu, M., Ishimaru, T., Matsuzaki, K., Research on fins for air conditioning heat exchangers, JSME international journal series Ⅱ,Vol.33, No.4. pp.749-756. , 1990
    34. Ikuta, S., Sasaki, Y., Tanaka, K. Takagi, M. and Himeno, R., Numerical analysis of heat transfer around louver assemblies, SAE paper No.900081, 1990.
    35. Achaichia, A., Heikal, M.R. Sulaiman, Y. and Cowell,T.A., Numerical investigation of flow and friction in louvered fin arrays, in Proceedings of the Tenth International Heat Transfer Conf., Brighton, 1994.
    36. Jang, J.Y., Wu, M.C. and Chang, W.J., Numerical and experimental studies of tree-dimensional plate-fin and tube heat exchangers, Int. J. Heat and Mass Transfer, Vol. 39, No. 14, pp.3057-3066 , 1996.
    37. Jang. J.Y. and Chen, L.K., Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger, Int. J. Heat and Mass Transfer, Vol. 40, No. 16, pp.3981-3990 , 1997.
    38. Jang, J.Y., Shieh, K.P. and Ay, H., 3-D thermal-hydraulic analysis in convex louver finned -tube heat exchangers, ASHRAE Annual Meeting, Cincinnati, OH, U.S. A., June 22-27, Vol.107 Pt.2, pp.501-509, 2001.
    39. Atkinson, K.N., Drakulic, R., Heikal, M.R., Cowell, T.A., Two-and three-dimensional numerical models of flow and heat transfer over louver fin arrays in compact heat exchangers, International J. Heat and Mass Transfer, Vol. 41, pp.4063-4080 , 1998.
    40. Beamer, H.E., and Cowell, T.A., Heat exchanger cooling fin with varying louver angle, United States Patent 5730214, March 24, 1998.
    41. Liu, M.S., Leu, J.S., Shyu, R.J., and, Wang, C.C., Effect of successively variable louver angle on the air-side performance of fin-and-tube heat exchangers, ASHRAE Annual Meeting, Cincinnati, OH, U.S. A., June 22-27., Vol.107, Pt.2, pp.510-516 , 2001.
    42. Schwaller, A.E., Motor Automotive Technology, Third Edition, Delmar Publishers. ,1999.
    43. Liu, Y. and Reitz, R.D., Modeling of heat conduction within chamber walls for multidimensional internal combustion engine simulations, Int. J. Heat Transfer. Vol.41, No. 6-7, pp.859-869, 1998.
    44. Grau, J.H., Garcia, J.M., Garcia, J.P., Robles, A.V. and Pastor, R.R., Modeling methodology of a spark-ignition engine and experimental validation part I: single-zone combustion model, SAE Paper, No. 2002-01-2193, 2002.
    45. Lee, C.W., Kim, C.W. and Kim, S.P., A steady of heat flux in a constant-volume combustion chamber, Automobile Engineering , Proc. Instn Mech .Engers Vol.217, Part D, 2003.
    46. Shojaefard, M. H., Noorpoor, A.R. Bozchaloe, D.A. and Ghaffarpour, M., Transient thermal analysis of engine exhaust vlave, Numerical Heat Transfer, Part A, 48: pp.627- 644, 2005.
    47. Lee, Y.L., Hong, Y.T.., Analysis of Engine Cooling Including Flow Nonuniformity Over a Radiator, International Journal of Vehicle Design (IJVD), Vol.24, (1), pp.121-135, 2000.
    48. Lawrence, N. and Kortekaas, H.Y.P., DECSIM-A PC-Based Diesel Engine Cycle and Cooling System Simulation Program, Mathematical and Computer Modelling Vol.33, pp.565-575, 2001.
    49. Yang, Z., Boseman J., Shen, F.Z. and Acre, J.A.. ,CFRM Concept for Vehicle Thermal System, SAE Paper No. 2002-01-1207, 2002.
    50. Yang, Z., Boseman, J., Shen, F.Z. and Acre, J.A. CFRM Concept at Vehicle Idle Conditions, SAE Paper No. 2003-01-0613, 2003.
    51. Witry, A., Al-Hajeri, M.H. and Bondok, A.A.., Thermal Performance of Automotive Aluminum Plate Radiator, Applied Thermal Engineering, Vol.25, pp.1207-1218, 2005.
    52. Oi, Z.G., Chen, J.P. and Chen, Z.J., Analysis and simulation of mobile air conditioning system coupled with engine cooling system, Energy Conversion and Management Vol.48, pp.1176-1184, 2007.
    53. Maoa, S., Cheng, C, Li, X, Michaelides, E. E., Thermal/structural analysis of radiators for heavy-duty trucks, Applied Thermal Engineering Vol.30, pp.1438-1446, 2010.
    54. Tayal, C.M., Fu, Y., Diwekar, U.M., Optimal design of heat exchangers: a genetic algorithm framework, Industrial & Engineering Chemistry Research Vol.38, pp.456-467, 1999.
    55. Fabbri, G., Heat transfer optimization in corrugated wall channels, International Journal of Heat and Mass Transfer Vol.43, pp.4299-4310, 2000.
    56. Yakut, K., Alemdaroglu, N., Isak, K., Celik, C., Experimental investigation of thermal resistance of a heat sink with hexagonal fins, Applied Thermal Engineering Vol.26, pp.2262-2271, 2006.
    57. Guo, L., Qina, F., Chen, J., Chen, Z., Zhou, Y., Influence of geometrical factors and pressing mould wear on thermal-hydraulic characteristics for steel offset strip fins at low Reynolds number, International Journal of Thermal Sciences Vol.46, pp.1285-1296, 2007.
    58. Guo, L., Chen, J., Feng, Q., Chen, Z., Geometrical optimization and mould wear effect on HPD type steel offset strip fin performance, Energy Conversion and Management Vol.48, pp.2473-2480, 2007.
    59. Zeng, M, Tang, L.H., Lin. M., Wang, Q.W., Optimization of heat exchangers with vortex-generator fin by Taguchi method., Applied Thermal Engineering Vol.30, pp.1775-1783, 2010.
    60. Launder, B.E. and Spalding, A.D., Mathematical Models of Turbulence, 90-100, Academic, London, 1972.
    61. Chen, Y.S. and Kim, S.W., Computation of turbulent flows using an extended turbulence closure model, NASA CR-179204, 1987.
    62. Wang, T.S. and Chen, Y.S., Unified navier-stokes flow field and performance analysis of liquid rocket engines, AIAA Journal, Vol.9, (5), pp.678-685., 1993.
    63. Liakopoulos, A., Explicit representations of the complete velocity profile in a turbulent boundary layer, AIAA Journal, Vol.22, pp.844-846., 1984.
    64. Thompson, J.F., Thames, F.C. and Mastin, C.W., Automatic numerical generation of boby-fitted curvilinear coordinate system for fields containing any number of arbitrary two-dimensional bodies, Journal of Computational Physics. Vol. 15, pp.299-310, 1974.
    65. Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W., Numerical Grid Generation Foundations and Applications. North Holland, 1985.
    66. Chang, W.J. and Jang, J.Y., Non-darcian effects on vortex instability of a horizontal natural convection flow in a porous medium, International Journal of Heat and Mass Transfer, Vol. 32, No. 3, pp. 529-539. , 1989.
    67. Wang, C.L. and Jang, J.Y., The developing mixed convection in a vertical non-darcian porous channel, The Chinese Journal of Mechanics, Vol. 10, No.2, pp.131-144. , 1994.
    68. STAR CD V.3.15A, Simulation of Turbulent Flow in Arbitrary Regions, Computational Dynamics Limited, UK., 2002.
    69. CFD-ACE(U), CFD Research Corporation, Alabama, USA, 2003.
    70. Park,Y.G. and Jacobi, A.M., Air-side heat transfer and friction correlations for flat-tube louver-fin heat exchangers, Journal of Heat Transfer, Transactions of the ASME Vol. 131 / 021801-1-12, 2009.
    71. Wang, C.C., Chi, K.Y. and Chang, C.J., Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation, Int. J. Heat Mass Transfer Vol.43, pp.2693-2700, 2000.
    72. Taguchi, G., Taguchi on robust technology development, Bring Quality Engineering (QE) Upstream., ASME, 1991.
    73. Mori, T., The New Experimental Design: Taguchi’s Approach to Quality Engineering., ASI Press, 1990.
    74. Taguchi, G., Elsayed, A.E., Thomas, C.H., Quality Engineering in Production Systems, McGraw-Hill, NewYork, 1989.
    75. Yun, J.Y. and Lee, K.S., Influence of design parameters on the heat transfer and flow friction characteristics of the heat transfer with slit fins. International Journal of Heat and Mass Transfer Vol.43, pp.2529-2539, 2000.
    76. Wang, Q.W. , Chen, Q.Y. , Zeng, M., ACFD-Taguchi combined method for numerical investigation of natural convection cooling performance of air-core reactor with noise reducing cover., Numerical Heat Transfer, Part A:Applications Vol.55, pp.1116-1130, 2009.
    77. Wang, C.C., Hwang, Y.M., Lin Y.T., Empirical correlations of heat transfer and flow friction characteristics of herringbone wavy fin and tube heat exchangers Int. J. Refrig. Vol.25, pp.673-680, 2002.
    78. Wong, L.T. and Smith, M.C., Airflow phenomena in the louvered-fin heat exchanger, SAE Paper No.730237, 1973.
    79. Chang, W.R. Wang, C.C., Tsi, W.C., Shyu, R. J., Air-side performance of louver fin heat exchanger, in: 4th ASME/JSME Thermal Engineering Joint Conference 4, pp.3467-3472, 1985.
    80. Madi, M.A., Johns, R.A., Heikal, M.R., Performance characteristics correlation for round tube and plate finned heat exchangers, Int. J. Refrig. Vol.21, pp.507- 517, 1998.
    81. Yun,J.Y., Lee,K.S., Investigation of heat transfer characteristics on various kinds of fin and tube heat exchangers with interrupted surfaces, Int. J. Heat Mass Transfer Vol.42, pp.2375-2385,1999.
    82. Chang, Y.J., Chang, W. J., Li, M.C. and Wang, C.C., An amendment of the generalized friction correlation for louver fin geometry, International Journal of Heat and Mass Transfer Vol.49, pp.4250 -4253, 2006.
    83. Wang, C.C. and Chi, K.Y., Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part I: New Experimental Data, Int. J. Heat Mass Transfer Vol.43, pp.2681-2691, 2000.
    84. Van Doormaal, J.P. and Raithby, F.D., Enhancements of the SIMPLE Method predicting Incompressible fliud flows, Numerical heat Transfer Vol.7, pp.147-163, 1984.
    85. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation. , 1984.

    下載圖示 校內:2014-07-14公開
    校外:2016-07-14公開
    QR CODE