簡易檢索 / 詳目顯示

研究生: 柯惇凱
Ko, Dun-Kai
論文名稱: 閃光對焊製程改善與關鍵技術之研究
The Processing Improvement and Key Technologies study of Flash Butt Welding
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 121
中文關鍵詞: 閃光對焊端面前處理頂鍛參數細晶強化ABAQUS模擬
外文關鍵詞: Flash butt welding, Porosity, Inclusion, Surface Pretreatment, Upsetting Distance, Upsetting Pressure, Grain Refinement, ABAQUS Simulation
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口試合格證明 I 摘要 II Extended Abstract III 誌謝 XIII 總目錄 XIV 圖目錄 XVII 表目錄 XXII 第 1 章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 3 1-3-1 閃焊端面前處理 3 1-3-2 閃焊參數 14 1-3-2-1 閃焊時間 14 1-3-2-2 頂鍛距離 17 1-3-2-3 閃焊電壓 19 1-3-3 熱處理 -- 細晶強化 21 1-4 研究歷程及目標 28 第 2 章 閃光對焊之理論基礎 29 2-1 閃焊端面前處理之機制 29 2-2 閃光對焊 (Flash Butt Welding) 30 2-3 閃光對焊之理論基礎 33 2-3-1 閃光對焊之熱傳理論 33 2-3-2 閃光對焊之熱電轉換理論 35 2-3-3 閃光對焊之熱固變形理論 36 2-4 閃焊參數整理 37 2-5 閃焊參數間之交互影響 38 2-6 細晶強化理論基礎 40 第 3 章 實驗方法與設備 43 3-1 實驗簡介 43 3-2 HSLA材料成分 44 3-3 實驗方法 45 3-3-1 金相分析 45 3-3-2 硬度量測 47 3-3-3 拉伸試驗 49 3-3-4 破斷面分析 51 3-3-5 夾雜物定量分析 53 3-3-6 晶粒腐蝕 57 3-4 實驗設備 58 3-5 ABAQUS 模擬 59 3-5-1 材料機械性質及熱性質 59 3-5-2 ABAQUS閃焊有限元素模型建立與接觸設定 63 第 4 章 實驗結果與討論 67 4-1 端面前處理 67 4-2 頂鍛距離 79 4-3 頂鍛壓力 91 4-4 細晶強化 98 4-5 ABAQUS模擬 113 第 5 章 總結 115 5-1 結論 115 5-2 未來展望 117 參考文獻 118

    [1] M. Fujii, H. Nakanowatari, and K. Nariai, "Rail flash-butt welding technology," JFE Steel Corp, vol. 1, 2015.
    [2] S. Idapalapati, A. R. Akisanya, K. K. Loh, and S. Yeo, "Failure analysis of a failed anchor chain link," Engineering Failure Analysis, vol. 89, pp. 258-270, 2018.
    [3] X. Yu, L. Feng, S. Qin, Y. Zhang, and Y. He, "Fracture analysis of U71Mn rail flash-butt welding joint," Case Studies in Engineering Failure Analysis, vol. 4, pp. 20-25, 2015.
    [4] Y. Ichiyama, H. Asahi, R. Hudson, R. Carnes, and R. Hebner, "Toughness Improvement of Resistance-Butt Welded Joints in Steel," CEM Publications, 2001.
    [5] J. M. Antonini, "Health effects of welding," Critical reviews in toxicology, vol. 33, no. 1, pp. 61-103, 2003.
    [6] J. M. Antonini, A. B. Lewis, J. R. Roberts, and D. A. Whaley, "Pulmonary effects of welding fumes: review of worker and experimental animal studies," American journal of industrial medicine, vol. 43, no. 4, pp. 350-360, 2003.
    [7] Y. Ichiyama and S. Kodama, "Flash-butt welding of high strength steels," Shinnittetsu Giho, vol. 385, p. 74, 2006.
    [8] A. Räsänen and J. Martikainen, "Experimental review of metallurgical flash weld defects in welded joints: essence of flat spots, penetrators and oxide inclusions," Science and Technology of Welding and Joining, vol. 16, no. 6, pp. 471-476, 2011.
    [9] Y. Chvertko, M. Shevchenko, and A. Pirumov, "Monitoring of the process of Flash-Butt Welding," Soldagem & Inspeção, vol. 18, pp. 31-38, 2013.
    [10] D. Kim, W. So, and M. Kang, "Effect of flash butt welding parameters on weld quality of mooring chain," Arch. Mater. Sci. Eng, vol. 38, pp. 112-117, 2009.
    [11] Y. Okazaki, H. Ishida, K. Suenaga, and T. Hidaka, "Influence of oxide inclusion compositions on microstructure and toughness of weld metal for high-strength steel," Welding International, vol. 26, no. 8, pp. 593-600, 2012.
    [12] P. Lu, Z. Xu, Y. Shu, and F. Ma, "Microstructure and failure analysis of flash butt welded HSLA 590CL steel joints in wheel rims," JOM, vol. 69, no. 2, pp. 135-143, 2017.
    [13] Z. Li, C. Hao, J. Zhang, and H. Zhang, "Effects of sheet surface conditions on electrode life in resistance welding aluminum," WELDING JOURNAL-NEW YORK-, vol. 86, no. 4, p. 81, 2007.
    [14] L. Han, M. Thornton, D. Boomer, and M. Shergold, "Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding," Journal of Materials Processing Technology, vol. 210, no. 8, pp. 1076-1082, 2010.
    [15] I. K. Al Naimi, M. H. Al Saadi, K. M. Daws, and N. Bay, "Influence of surface pretreatment in resistance spot welding of aluminum AA1050," Production & Manufacturing Research, vol. 3, no. 1, pp. 185-200, 2015.
    [16] L. Liu, S. Zhou, Y. Tian, J. Feng, J. Jung, and Y. Zhou, "Effects of surface conditions on resistance spot welding of Mg alloy AZ31," Science and Technology of Welding and Joining, vol. 14, no. 4, pp. 356-361, 2009.
    [17] T. Kuroda, K. Ikeuchi, and H. Ikeda, "Flash butt resistance welding for duplex stainless steels," Vacuum, vol. 80, no. 11-12, pp. 1331-1335, 2006.
    [18] Q. Zhang, L. Li, W. Ding, H. T. Song, and Z. K. Gao, "Investigation on process and welded joint mechanical properties of bainitic steel rail flash butt welding," in Key Engineering Materials, 2017, vol. 723: Trans Tech Publ, pp. 406-411.
    [19] Y. Kim and K. MJ, "Effect of Process Variables on the Flash Butt Welding of High Strength Steel," International Journal of Korean Welding Society, vol. 3, no. 2, pp. 24-28, 2003.
    [20] C. Xi, D. Sun, Z. Xuan, J. Wang, and G. Song, "Microstructures and mechanical properties of flash butt welded high strength steel joints," Materials & Design, vol. 96, pp. 506-514, 2016.
    [21] R. R. Baracaldo, M. C. Santos, and M. A. A. Echeverría, "Effect of flash butt welding parameters on mechanical properties of wheel rims," Scientia et technica, vol. 23, no. 1, pp. 51-57, 2018.
    [22] C. Xi, D. Sun, Z. Xuan, J. Wang, and G. Song, "The effects of flash allowance and upset allowance on microstructures and mechanical properties of flash butt welded RS590CL steel joints," Journal of Materials Research, vol. 31, no. 24, pp. 3968-3980, 2016.
    [23] C. W. Ziemian, M. M. Sharma, and D. E. Whaley, "Effects of flashing and upset sequences on microstructure, hardness, and tensile properties of welded structural steel joints," Materials & Design, vol. 33, pp. 175-184, 2012.
    [24] N. Shajan, K. S. Arora, V. Sharma, and M. Shome, "Effect of upset pressure on texture evolution and its correlation to toughness in flash butt joints," Science and Technology of Welding and Joining, vol. 23, no. 5, pp. 434-440, 2018.
    [25] V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, and R. Z. Valiev, "Microstructure and properties of pure Ti processed by ECAP and cold extrusion," Materials Science and Engineering: A, vol. 303, no. 1-2, pp. 82-89, 2001.
    [26] N. Tsuji, R. Ueji, and Y. Minamino, "Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process," Scripta Materialia, vol. 47, no. 2, pp. 69-76, 2002.
    [27] Y. I. Son, Y. K. Lee, K.-T. Park, C. S. Lee, and D. H. Shin, "Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties," Acta materialia, vol. 53, no. 11, pp. 3125-3134, 2005.
    [28] A. Azushima et al., "Severe plastic deformation (SPD) processes for metals," CIRP annals, vol. 57, no. 2, pp. 716-735, 2008.
    [29] M. Calcagnotto, D. Ponge, and D. Raabe, "Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels," Materials Science and Engineering: A, vol. 527, no. 29-30, pp. 7832-7840, 2010.
    [30] S. Amani, G. Faraji, and K. Abrinia, "Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE)," Journal of Manufacturing Processes, vol. 28, pp. 197-208, 2017.
    [31] T. Furuhara et al., "Phase transformation from fine-grained austenite," ISIJ international, vol. 48, no. 8, pp. 1038-1045, 2008.
    [32] A. Shibata, S. Daido, D. Terada, and N. Tsuji, "Microstructures of pearlite and martensite transformed from ultrafine-grained austenite fabricated through cyclic heat treatment in medium carbon steels," Materials Transactions, vol. 54, no. 9, pp. 1570-1574, 2013.
    [33] T. Furuhara, N. Takayama, and G. Miyamoto, "Key factors in grain refinement of martensite and bainite," in Materials Science Forum, 2010, vol. 638: Trans Tech Publ, pp. 3044-3049.
    [34] S. Maropoulos, S. Karagiannis, and N. Ridley, "The effect of austenitising temperature on prior austenite grain size in a low-alloy steel," Materials Science and Engineering: A, vol. 483, pp. 735-739, 2008.
    [35] R. A. Napitupulu, "Influence of heating rate and temperature on austenite grain size during reheating steel," in IOP Conference Series: Materials Science and Engineering, 2017, vol. 237, no. 1: IOP Publishing, p. 012038.
    [36] H. Zhao and E. J. Palmiere, "Influence of cooling rate on the grain-refining effect of austenite deformation in a HSLA steel," Materials Characterization, vol. 158, p. 109990, 2019.
    [37] G. R. Johnson, "A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures," Proc. 7th Inf. Sympo. Ballistics, pp. 541-547, 1983.
    [38] M.-h. Park, A. Shibata, and N. Tsuji, "Challenging Ultra Grain Refinement of Ferrite in Low-C Steel Only by Heat Treatment," Frontiers in Materials, p. 425, 2020.
    [39] 李銘豐, "基於熱電固耦合分析之閃焊製程參數探討," 碩士, 機械工程學系, 國立成功大學, 台南市, 2021. [Online]. Available: https://hdl.handle.net/11296/9r5394
    [40] J. Herraez and R. Belda, "A study of free convection in air around horizontal cylinders of different diameters based on holographic interferometry. Temperature field equations and heat transfer coefficients," International journal of thermal sciences, vol. 41, no. 3, pp. 261-267, 2002.
    [41] V. Kodur, M. Dwaikat, and R. Fike, "High-temperature properties of steel for fire resistance modeling of structures," Journal of Materials in Civil Engineering, vol. 22, no. 5, pp. 423-434, 2010.
    [42] 何顺鹏, "基于 ABAQUS 的钢轨闪光焊有限元模拟分析," 西南交通大学, 2018.
    [43] M. Vogler and S. Sheppard, "Electrical contact resistance under high loads and elevated temperatures," surfaces, vol. 9, no. 10, p. 11, 1993.
    [44] W. Li et al., "Heat reflux in flash and its effect on joint temperature history during linear friction welding of steel," International Journal of Thermal Sciences, vol. 67, pp. 192-199, 2013.
    [45] K. Andrews, "Empirical formulae for the calculation of some transformation temperatures," J. Iron Steel Inst., pp. 721-727, 1965.

    無法下載圖示 校內:2027-06-15公開
    校外:2027-06-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE