簡易檢索 / 詳目顯示

研究生: 林怡吟
Lin, Yi-Yin
論文名稱: 透過浸置法後處理大幅提升PEDOT:PSS/奈米碳管為基的低溫熱電薄膜與元件之輸出功率
Enhancing Output Power Of Low-Temperature Thermoelectric Thin Films and Devices Based on PEDOT:PSS/Carbon Nanotubes Through an Immersion Post treatment
指導教授: 陳嘉勻
Chen, Chia-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: PEDOT:PSS奈米碳管熱電後處理奈米複合結構協同作用
外文關鍵詞: Thermoelectric, PEDOT:PSS, carbon nanotubes, post treatment, synergetic effect
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技持續發展,生活周遭有相當可觀的熱能由民生用品裝置中逸散至環境,例如各式電子、通訊、照明與醫療檢測等等。而熱電材料為一種可以將熱能直接轉換成電能的環境友善性材料,然而目前熱電材料的轉換效率仍低落,再加上既有的傳統熱電材料昂貴且適合操作在擁有極大溫度差的環境下,因此,本研究主要針對在低溫環境下 ( <150℃ ),以酸處理多壁奈米碳管和導電高分子PEDOT:PSS組成的奈米複合結構薄膜為本體,利用極性溶劑DMSO進行不同浸泡時間的後處理,並探討其熱電性質的表現,建立改質後之薄膜的最佳化參數。透過DMSO浸置法後處理,可將熱電薄膜的席貝克係數和導電率分別大幅提升至117.4 μV/ K以及2355.5 S/cm,使最佳化功率因子達到3246.5 μW/mK2,相較於未經浸泡之薄膜的功率因子提升將近10倍,並預計最佳化之薄膜ZT值將可達0.18以上。另外,在實際輸出功率的探討上,在溫差為60 K下,經最佳化浸置法後處理後之熱電薄膜其功率輸出可達107.98 nW,作為日後發展熱電元件的依據。相對於近五年的相關熱電薄膜之處理技術上,本研究在功率因子上由已知文獻最大值之469 μW/mK2提升到3246.5 μW/mK2,優勢在於使用複合結構薄膜,並透過酸處理奈米碳管強化和PEDOT:PSS間的交互作用,亦利用極性溶劑後處理大幅移除絕緣性區域和改變PEDOT:PSS結構,增強複合結構所產生的效應。
    在機制探討上,藉由XPS說明PEDOT:PSS化學組成含量比例的變化以及奈米碳管和PEDOT之間的鍵結情形;並透過Raman光譜分析了解PEDOT:PSS構型改變和奈米碳管晶格缺陷減少;亦利用XRD針對層狀堆疊之PEDOT的晶面間距變化和晶體結構對熱電性質的影響進行探討;以及藉著AFM觀察奈米碳管隨後處理所發生的排列情形,最終可證明PEDOT:PSS和奈米碳管之間的協同作用,使薄膜展現優越熱電性質。而未來將持續在可撓式熱電元件技術於醫療檢測與自供電裝置的應用上持續發展。

    Thermoelectric materials can convert thermal energy into electricity directly. In this study, we focused on low temperature heat ( <150 ℃ ) and introduced EG-treated PEDOT:PSS blended with functionalized MWCNTs to form the nanocomposites, which would be immersed in polar organic solvent, DMSO under various durations as the post treatment. The mechanism of MWCNTs / PEDOT:PSS nanocomposites is discussed through detailed investigations including morphological, chemical-structure, surface-state band-structure and topographical characterizations. Examinations of conformational changes of involved polymer layer and interaction between PEDOT and MWCNTs are discussed by XPS and Raman analysis. D-spacing difference of PEDOT layer structure and morphology rearrangement of MWCNTs are analyzed by XRD and AFM investigations. The mechanism are carried out to deeply explain the synergetic enhancement in thermoelectric properties of low-temperature thermoelectric films via interaction between functionalized MWCNTs and PEDOT:PSS through DMSO immersion, which is also believed to create nanoscale junction that can filter low energy carriers. After immersing in DMSO, the Seebeck coefficient and the electrical conductivity of treated MWCNTs / PEDOT:PSS can be elevated up to 117.4 μV/K and 2355.5 S/cm respectively. Then, the power factor ( S2σ ) can be significantly increased to 3246.5 μW/mK2. It is expected that the ZT value of the optimized film could reach more than 0.18. Moreover, we also obtain the maximum output power achieved at 107.98 nW at ∆T=60 K. In the future, we will continue to develop the low-temperature and flexible thermoelectric application such as medical testing and wearable self-powered devices.

    摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 理論基礎與文獻回顧 4 2.1 熱電效應 ( Thermoelectric effect ) 4 2.1.1 席貝克效應 ( Seebeck effect ) 4 2.1.2 帕帖爾效應 ( Peltier effect ) 5 2.1.3 湯姆森效應 ( Thomson effect ) 7 2.1.4 熱電優值 ( Thermoelectric figure of merit, ZT ) 8 2.2 熱電材料 10 2.2.1 無機熱電材料 ( Inorganic thermoelectric materials ) 10 2.2.2 優化無機材料熱電性質方法 11 2.2.3 有機熱電材料 ( Organic thermoelectric materials ) 12 2.2.4 導電高分子PEDOT:PSS 13 2.3 優化PEDOT:PSS熱電性質之方法 15 2.3.1 極性有機溶劑處理 ( Polar Organic Solvent ) 15 2.3.2 酸性或鹼性溶液處理 ( Acids or Alkalis ) 17 2.4 高分子奈米複合結構 ( Polymer nanocomposites ) 19 2.4.1 高分子/奈米碳管複合結構 ( Polymer/Carbon nanotube nanocomposites ) 19 2.5 研究動機 20 第三章 儀器設備與實驗流程 21 3.1 研究流程圖 21 3.2 實驗藥品與材料 22 3.3 實驗儀器 23 3.3.1 精密天平 ( Precision Balances ) 23 3.3.2 數位型電磁加熱攪拌機 ( Heating Panel ) 23 3.3.3 超音波震盪器 ( Ultrasonic Cleaner ) 23 3.3.4 旋轉塗佈機 ( Spin Coater ) 23 3.4 實驗步驟與熱電性質量測方法 24 3.4.1 基板的製備 ( Substrate ) 24 3.4.2 酸處理多壁奈米碳管的製備 ( Acid-treated MWCNTs ) 24 3.4.3 添加EG之PEDOT:PSS溶液的製備 ( EG-treated PEDOT:PSS ) 24 3.4.4 添加EG之PEDOT:PSS溶液混合酸處理多壁奈米碳管溶液的製備 24 3.4.5 PEDOT:PSS / MWCNTs 複合結構薄膜的製備 25 3.4.6 PEDOT:PSS / MWCNTs 複合結構薄膜後處理 25 3.4.7 席貝克係數量測 29 3.5 材料分析儀器 31 3.5.1 電壓電流量測系統 ( I-V Measurement System ) 31 3.5.2 四點探針 ( Four-point Probe ) 31 3.5.3 高解析場發射掃描式電子顯微鏡 ( High Resolution Scanning Electron Microscope, HR-SEM ) 32 3.5.4 拉曼光譜分析儀 ( Raman Spectrometer ) 33 3.5.5 X光薄膜繞射儀 ( X-ray Diffractometer, XRD ) 34 3.5.6 X光光電子能譜儀 ( X-ray Photoelectron Spectroscopy, XPS ) 34 3.5.7 多功能掃描探針顯微鏡 ( Scanning Probe Microscope, SPM ) 35 3.5.8 霍爾效應分析儀 ( Hall Effect Analyzer ) 36 第四章 結果與討論 37 4.1 材料性質分析 37 4.1.1 X射線光電子能譜儀分析 ( XPS analysis ) 37 4.1.2 拉曼光譜分析 ( Raman analysis ) 41 4.1.3 X光薄膜繞射分析 ( XRD analysis ) 47 4.1.4 多功能掃描探針顯微鏡分析 ( SPM analysis ) 54 4.2 MWCNTs / PEDOT:PSS薄膜經DMSO浸置法後處理的演變機制 55 4.3 薄膜熱電性質分析 57 4.3.1 DMSO浸置法後處理之MWCNTs / PEDOT:PSS薄膜的席貝克係數 57 4.3.2 H2SO4或DMSO清洗法後處理之薄膜的席貝克係數 ( Seebeck coefficient via H2SO4 or DMSO washing ) 61 4.3.3 導電率 ( Electrical conductivity, σ )和相關電性分析 62 4.3.4 功率因子 ( Power Factor ) 64 4.3.5 本研究與歷年來文獻比對 66 4.3.6 熱傳導係數 ( κ )與ZT值表現 69 4.3.7 電流電壓曲線 ( I-V Curve ) 和輸出功率 ( Output Power ) 70 4.3.8 薄膜元件輸出效果初步展示 74 第五章 結論 79 第六章 未來展望 80 參考文獻 81

    [1] 工業技術研究院 蒸汽壓降節能發電與餘(廢)熱再利用; 2016.
    [2] 工業技術研究院 低溫熱電廢熱回收應用; 2015.
    [3] Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M. H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F. M.; Mohaddes, F., Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy 2020, 258, 114069.
    [4] Rowe, D. M., CRC handbook of thermoelectrics. CRC press: 2018.
    [5] Kong, L. B.; Li, T.; Hng, H. H.; Boey, F.; Zhang, T.; Li, S., Waste energy harvesting. Lecture Notes in Energy 2014, 24, 263-403.
    [6] Elsheikh, M. H.; Shnawah, D. A.; Sabri, M. F. M.; Said, S. B. M.; Hassan, M. H.; Bashir, M. B. A.; Mohamad, M., A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and sustainable energy reviews 2014, 30, 337-355.
    [7] Snyder, G. J.; Toberer, E. S., Complex thermoelectric materials. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group 2011, 101-110.
    [8] Gueye, M. N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P., Progress in understanding structure and transport properties of PEDOT-based materials: a critical review. Progress in Materials Science 2020, 108, 100616.
    [9] Gao, X.; Uehara, K.; Klug, D. D.; John, S. T., Rational design of high-efficiency thermoelectric materials with low band gap conductive polymers. Computational materials science 2006, 36 (1-2), 49-53.
    [10] Liu, S.; Li, H.; He, C., Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT: PSS nanocomposites. Carbon 2019, 149, 25-32.
    [11] Sun, J.; Yeh, M.-L.; Jung, B.; Zhang, B.; Feser, J.; Majumdar, A.; Katz, H., Simultaneous increase in seebeck coefficient and conductivity in a doped poly (alkylthiophene) blend with defined density of states. Macromolecules 2010, 43 (6), 2897-2903.
    [12] Liu, C.; Xu, J.; Lu, B.; Yue, R.; Kong, F., Simultaneous increases in electrical conductivity and Seebeck coefficient of PEDOT: PSS films by adding ionic liquids into a polymer solution. Journal of electronic materials 2012, 41 (4), 639-645.
    [13] Bubnova, O.; Khan, Z. U.; Wang, H.; Braun, S.; Evans, D. R.; Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J.-B.; Geerts, Y. H., Semi-metallic polymers. Nature materials 2014, 13 (2), 190-194.
    [14] Korotcenkov, G.; Brinzari, V.; Ham, M.-H., In2O3-based thermoelectric materials: the state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion. Crystals 2018, 8 (1), 14.
    [15] Wudil, Y.; Gondal, M.; Almessiere, M.; Alsayoud, A., The multi-dimensional approach to synergistically improve the performance of inorganic thermoelectric materials: a critical review. Arabian Journal of Chemistry 2021, 103103.
    [16] Hasan, M. N.; Wahid, H.; Nayan, N.; Mohamed Ali, M. S., Inorganic thermoelectric materials: A review. International Journal of Energy Research 2020, 44 (8), 6170-6222.
    [17] Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348 (6230), 109-114.
    [18] Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.-K.; Goddard Iii, W. A.; Heath, J. R., Silicon nanowires as efficient thermoelectric materials. nature 2008, 451 (7175), 168-171.
    [19] Madavali, B.; Kim, H.-S.; Lee, K.-H.; Hong, S.-J., Enhanced Seebeck coefficient by energy filtering in Bi-Sb-Te based composites with dispersed Y2O3 nanoparticles. Intermetallics 2017, 82, 68-75.
    [20] Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A., Organic thermoelectric materials for energy harvesting and temperature control. Nature Reviews Materials 2016, 1 (10), 1-14.
    [21] He, M.; Qiu, F.; Lin, Z., Towards high-performance polymer-based thermoelectric materials. Energy & Environmental Science 2013, 6 (5), 1352-1361.
    [22] McGrail, B. T.; Sehirlioglu, A.; Pentzer, E., Polymer composites for thermoelectric applications. Angewandte Chemie International Edition 2015, 54 (6), 1710-1723.
    [23] Reynolds, J. R.; Thompson, B. C.; Skotheim, T. A., Conjugated Polymers: Properties, Processing, and Applications. CRC press: 2019.
    [24] Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F. H.; Ouyang, J., Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics 2015, 26 (7), 4438-4462.
    [25] Lang, U.; Müller, E.; Naujoks, N.; Dual, J., Microscopical investigations of PEDOT: PSS thin films. Advanced Functional Materials 2009, 19 (8), 1215-1220.
    [26] Xu, Y.; Jia, Y.; Liu, P.; Jiang, Q.; Hu, D.; Ma, Y., Poly (3, 4-ethylenedioxythiophene)(PEDOT) as promising thermoelectric materials and devices. Chemical Engineering Journal 2020, 126552.
    [27] Tsai, T.-C.; Chang, H.-C.; Chen, C.-H.; Huang, Y.-C.; Whang, W.-T., A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT: PSS films. Organic Electronics 2014, 15 (3), 641-645.
    [28] Jiang, Q.; Lan, X.; Liu, C.; Shi, H.; Zhu, Z.; Zhao, F.; Xu, J.; Jiang, F., High-performance hybrid organic thermoelectric SWNTs/PEDOT: PSS thin-films for energy harvesting. Materials Chemistry Frontiers 2018, 2 (4), 679-685.
    [29] Ouyang, L.; Musumeci, C.; Jafari, M. J.; Ederth, T.; Inganäs, O., Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT: PSS films. ACS applied materials & interfaces 2015, 7 (35), 19764-19773.
    [30] Xiong, J.; Jiang, F.; Zhou, W.; Liu, C.; Xu, J., Highly electrical and thermoelectric properties of a PEDOT: PSS thin-film via direct dilution–filtration. RSC advances 2015, 5 (75), 60708-60712.
    [31] Kim, G.-H.; Shao, L.; Zhang, K.; Pipe, K. P., Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nature materials 2013, 12 (8), 719-723.
    [32] Wang, X.; Kyaw, A. K. K.; Yin, C.; Wang, F.; Zhu, Q.; Tang, T.; Yee, P. I.; Xu, J., Enhancement of thermoelectric performance of PEDOT: PSS films by post-treatment with a superacid. RSC advances 2018, 8 (33), 18334-18340.
    [33] Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y. R.; Kim, B. J.; Lee, K., Highly conductive PEDOT: PSS nanofibrils induced by solution‐processed crystallization. Advanced materials 2014, 26 (14), 2268-2272.
    [34] Fan, Z.; Li, P.; Du, D.; Ouyang, J., Significantly enhanced thermoelectric properties of PEDOT: PSS films through sequential post‐treatments with common acids and bases. Advanced Energy Materials 2017, 7 (8), 1602116.
    [35] Kang, Y. H.; Lee, U.-H.; Jung, I. H.; Yoon, S. C.; Cho, S. Y., Enhanced thermoelectric performance of conjugated polymer/CNT nanocomposites by modulating the potential barrier difference between conjugated polymer and CNT. ACS Applied Electronic Materials 2019, 1 (7), 1282-1289.
    [36] Lee, W.; Kang, Y. H.; Lee, J. Y.; Jang, K.-S.; Cho, S. Y., Improving the thermoelectric power factor of CNT/PEDOT: PSS nanocomposite films by ethylene glycol treatment. RSC advances 2016, 6 (58), 53339-53344.
    [37] Hsu, J.-H.; Choi, W.; Yang, G.; Yu, C., Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Organic Electronics 2017, 45, 182-189.
    [38] Lu, N.; Li, L.; Liu, M., A review of carrier thermoelectric-transport theory in organic semiconductors. Physical Chemistry Chemical Physics 2016, 18 (29), 19503-19525.
    [39] Yao, Q.; Wang, Q.; Wang, L.; Chen, L., Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering. Energy & Environmental Science 2014, 7 (11), 3801-3807.
    [40] Wang, Q.; Yao, Q.; Chang, J.; Chen, L., Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. Journal of Materials Chemistry 2012, 22 (34), 17612-17618.
    [41] Gao, C.; Chen, G., Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Composites Science and Technology 2016, 124, 52-70.
    [42] Khan, Z. U.; Edberg, J.; Hamedi, M. M.; Gabrielsson, R.; Granberg, H.; Wågberg, L.; Engquist, I.; Berggren, M.; Crispin, X., Thermoelectric polymers and their elastic aerogels. Advanced Materials 2016, 28 (22), 4556-4562.
    [43] Wang, L.; Yao, Q.; Xiao, J.; Zeng, K.; Qu, S.; Shi, W.; Wang, Q.; Chen, L., Engineered molecular chain ordering in single‐walled carbon nanotubes/polyaniline composite films for high‐performance organic thermoelectric materials. Chemistry–An Asian Journal 2016, 11 (12), 1804-1810.
    [44] Li, J.; Liu, J.-C.; Gao, C.-J., On the mechanism of conductivity enhancement in PEDOT/PSS film doped with multi-walled carbon nanotubes. Journal of polymer research 2010, 17 (5), 713-718.
    [45] Hosseini, E.; Kollath, V. O.; Karan, K., The key mechanism of conductivity in PEDOT: PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. Journal of Materials Chemistry C 2020, 8 (12), 3982-3990.
    [46] Palumbiny, C. M.; Liu, F.; Russell, T. P.; Hexemer, A.; Wang, C.; Müller‐Buschbaum, P., The crystallization of PEDOT: PSS polymeric electrodes probed in situ during printing. Advanced materials 2015, 27 (22), 3391-3397.

    無法下載圖示 校內:2025-12-08公開
    校外:2026-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE