簡易檢索 / 詳目顯示

研究生: 游力蓁
Yu, Li-Zhen
論文名稱: 雙穩態有機薄膜電晶體與有機記憶體元件研究
Investigation of bistable organic thin film transistors and organic memory devices
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 65
中文關鍵詞: 雙穩態有機記憶體元件薄膜電晶體
外文關鍵詞: Bistable, organic memory devices, thin film transistors
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,首先製作閘極控制三端有機元件,並進一步研究元件所具有之記憶體特性與負微分電阻現象,元件金屬電極與有機主動層材料則分別為金(gold, Au)與9,10-二萘蒽(9,10-di(2-naphthyl) anthracene, ADN),由元件測量結果發現,元件記憶體特性與負微分電阻特性可藉由偏壓於元件閘極家以調變,其中元件記憶體特性與負微分電阻特性的成因,則是當金原子沉積於9,10-二萘蒽元件主動層上時,在金電極與9,10-二萘蒽主動層界面形成缺陷位置。然而相較於以發表文獻,元件於開關比仍有改善空間,因此本研究以垂直式結構製作有機薄膜記憶電晶體,以提升元件記憶體特性。
    更進一步,本實驗製作三端垂直式有機記憶電晶體,以研究記憶體機制與記憶體特性對於施加電場之間的關係,9,10-二萘蒽仍為有機記憶電晶體元件的主動層材料,由元件測量結果顯示,有機記憶電晶體於開啟型態與關閉型態時,都可藉由施加不同大小的閘源極電壓以調變元件汲源極電流,切換汲源極電壓值隨著閘源極電壓增大而變小,有機記憶電晶體元件的電流開關比,可藉著施加閘源極電壓,達到最大值為2.02105。
    本研究利用熱蒸鍍系統,製作[上部金陽極電極/9,10-二萘蒽主動層/下部金陰極電極]結構於玻璃基板上,以更進一步了解有機記憶體元件,具雙穩態記憶體現象的機制。由二次離子質譜儀測量結果,我們觀察到金原子漂移進入9,10-二萘蒽主動層中,並且我們計算出由金原子所形成的缺陷濃度為9.61016cm-3,其缺陷能階位置為0.553eV,因此我們將有機記憶體元件的雙穩態記憶體特性,歸因於金原子漂移進入9,10-二萘蒽主動層中所形成的深層缺陷,並藉由建立能帶圖以完整解釋有機記憶體特性的機制。

    The currentvoltage characteristics of the gatecontrolled threeterminal organicbased transistors with memory effect and negative differential resistances (NDR) were studied. Gold and 9,10-di(2-naphthyl)anthracene (ADN) were used as the metal electrode and active channel layer of the transistors, respectively. By using various gatesource voltages, the memory and NDR characteristics of the transistors can be modulated. The memory and NDR characteristics of the transistors were attributed to the formation of trapping sites in the interface between Au electrode and ADN active layer caused by the defects, when Au metal deposited on the ADN active layer. However, the different in the current values for the ON and OFF states can be improved. The vertical structure was used to improve the memory characteristics of the transistors.
    Threeterminal vertical organic memory transistors were fabricated to investigate the memory mechanisms and the relation between memory behavior and applied electrical field. The 9,10-di(2-naphthyl)anthracene (ADN) was used as the active channel layer for the organic memory transistors. In both the ON and OFF state of the organic memory transistors, the drainsource currents (IDS) were modulated by applying various gatesource voltages (VGS). The switching drainsource voltage (VDS) decreased with an increase in applied VGS voltages. The ON/OFF IDS current ratio of the organic memory transistors could be modulated up to the maximum value of 2.02x105 by applying VGS voltage bias.
    To investigate the memory bistable mechanisms of organic memory devices, the structure of [top Au anode/9,10-di(2-naphthyl)anthracene (ADN) active layer/bottom Au cathode] was deposited using a thermal deposition system. The Au atoms migrated into the ADN active layer was observed from the secondary ion mass spectrometry. The density of 9.6×1016 cm-3 and energy level of 0.553 eV of the induced trapping centers caused by the migrated Au atoms in the ADN active layer were calculated. The the memory bistable behaviors of the organic memory devices were attributed to the induced trapping centers. The energy diagram was established to verify the mechanisms.

    Contents Abstract(in Chinese)……………………………………………………I Abstract(in English)……..………………………………..….……….III Contents……..………………………………..….………......................V Table caption.………………………………..….………......................IX Figure caption.………………………………..….……….....................X CHAPTER 1 Introduction…………………………………………..…1 1.1 The motivation………………………………………………….1 1.2 Overview of this dissertation………………………………..…4 CHAPTER 2 Theory ……………………………………………….....11 2.1 Characteristics of 9,10-di(2-naphthyl)anthracene (ADN)…...11 2.2 Secondary ion mass spectrometry (SIMS)……………………12 2.3 Ultraviolet photoelectron spectroscopy (UPS)..………….......13 2.4 Spacechargelimited current (SCLC)………………………14 CHAPTER 3 Experimental Procedure………………….....................21 3.1 Thermal deposition System………………………..….….……21 3.2 Fabrication and measurement of the organic memory transistors with Au/ADN/Au plane structure…………….....22 3.3 Fabrication and measurement of the organic memory transistors with Au/ADN/Au vertical structure…….....……24 3.4 Fabrication and measurement of the organic memory devices with Au/ADN/Au vertical structure…………………..……..26 CHAPTER 4 Experimental Results and Discussions..……………...31 4.1 The currentvoltage characteristics of the organic memory transistors with plane structure……..……….………….....31 4.1.1 The currentvoltage characteristics of transistors fabricated with higher Au electrode evaporation rate (transistor A)…………………………………………...31 4.1.2 The currentvoltage characteristics of transistors fabricated with lower Au electrode evaporation rate (transistor B)……………………………………...……37 4.1.3 The influence of Au deposition rate to the organic thin film transistors……………………………….…..….....39 4.2 The currentvoltage characteristics of the organic memory transistors with vertical structure………………………….40 4.2.1 The memory characteristics of the organic memory transistors with ADN active channel layer of various thicknesses…………………….…………………….….40 4.2.2 The output characteristics of the organic memory transistors…………………………………………........42 4.2.3 The transfer characteristics of the organic memory transistors……………………………………………….44 4.2.4 The switching VDSVGS characteristics of the organic memory transistors……………………………….…….45 4.2.5 The Cycle measurement results and retention time measurement results of the organic memory transistors……………………………………………….47 4.2.6 The relation between the modulation ability of the organic memory transistors and the roughness and ADN active layers………………………………………50 4.3 Memory bistable mechanisms of organic memory devices..52 4.3.1 The currentvoltage (IV) characteristics of the organic devices…………………………………………………...52 4.3.2 The distribution profiles of Au and ADN......…………...53 4.3.3 The analysis using the spacechargelimited current (SCLC) model………………………………………......55 4.3.4 The energy level of trapping centers induced by the migrated Au atoms in ADN layer……………………...56 4.3.5 The influence for the Au deposition rate and the carriers injection barrier………………………………………...58 4.3.6 The energy diagram of the organic memory devices…..60 CHAPTER 5 Conclusion……………………………..………........…..64 CHAPTER 6 Future Work……………………………………........….65

    Chapter 1
    [1] C. H. Tu, Y. S. Lai, and D. L. Kwong, “Electrical switching and transport in the Si/organic monolayer/Au and Si/organic bilayer/Al devices,” Appl. Phys. Lett., 89, 062105 (2006).
    [2] W. J. Yoon, S. Y. Chung, and P. Berger, “Room-temperature negative differential resistance in polymer tunnel diodes using a thin oxide layer and demonstration of threshold logic,” Appl. Phys. Lett., 87, 203506 (2005).
    [3] J. A. Duraes, M. J. Araújo Sales, R. F. Souto, A. Romariz, J. C. da Costa, A. M. Ceschin, and S. G. C. Moreira, “Observation of negative differential resistance and hysteretic effect on buriti oil:polystyrene organic devices,” Appl. Phys. Lett., 89, 133502 (2006).
    [4] J. S. Chen, L. L. Xu, J. Lin, Y. H. Geng, L. X. Wang, and D. G. Ma, “Negative differential resistance effect in organic devices based on an anthracene derivative,” Appl. Phys. Lett., 89, 083514 (2006).
    [5] A. Bandyopadhyay, and Y. Wakayama, “Origin of negative differential resistance in molecular junctions of Rose Bengal,” Appl. Phys. Lett., 90, 023512 (2007).
    [6] R. J. Tseng, J. Quyang, C. W. Chu, J. Huang, and Y. Yang, “Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device,” Appl. Phys. Lett., 88, 123506 (2006).
    [7] C. H. Tu, D. L. Kwong, and Y. S. Lai, “Negative differential resistance and electrical bistability in nanocrystal organic memory devices,” Appl. Phys. Lett., 89, 252107 (2006).
    [8] S. W. Culligan, A. C. A. Chen, J. U. Wallace, K. P. Klubek, C. W. Tang, and S. H. Chen, “Effect of hole mobility through emissive layer on temporal stability of blue organic light-emitting diodes,” Adv. Funct. Mater., 16, 1481 (2006).
    [9] T. H. Liu, C. Y. Iou, and C. H. Chen, “Development of highly stable organic electroluminescent devices with a doped co-host emitter system,” Curr. Appl. Phys., 5, 218 (2005).
    [10] L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett., 84, 607 (2004).
    [11] D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery, and G. Haas, “Metal∕organic∕metal bistable memory devices,” Appl. Phys. Lett., 85, 5763 (2004).
    [12] M. Terai, K. Fujita, and T. Tsutsui, “Electrical bistability of organic thin-film device using Ag electrode,” Jpn. J. Appl. Phys., 45, 3754 (2006).
    [13] S. W. Shi, J. B. Peng, J. Lin, and D. G. Ma, “Write-once read-nany-times memory based on a single layer of pentacene,” IEEE Electron Device Lett., 30, 343 (2009).
    [14] Z. S. Su, M. K. Fung, C. S. Lee, W. L. L, and S. T. Lee, “Memory effect and negative differential resistance in tris-(8-hydroxy quinoline) aluminum/bathocuproine bilayer devices,” Appl. Phys. Lett., 93, 083301 (2008).
    [15] J. Lin, and D. Ma, “Origin of negative differential resistance and memory characteristics in organic devices based on tris(8-hydroxyquinoline) aluminum,” J. Appl. Phys., 103, 124505 (2008).
    [16] L. Z. Yu, and C. T. Lee, “Investigation of three-terminal organic-based devices with memory effect and negative differential resistance,” Appl. Phys. Lett., 95, 103305 (2009).
    [17] T. B. Singh, N. Marjanovic, G. J. Matt, N. S. Sariciffci, R. Schwodiauer, and S. Bauer, “Nonvolatile organic field-effect transistor memory element with a polymeric gate electret,” Appl. Phys. Lett., 85, 5409 (2004).
    [18] C. Pearson, J. H. Ahn, M. F. Mabrook, D. A. Zeze, M. C. Petty, K. T. Kamtekar, C. S. Wang, M. R. Bryce, P. Dimitrakis, and D. Tsoukalas, “Electronic memory device based on a single-layer fluorene-containing organic thin film,” Appl. Phys. Lett., 91, 123506 (2007).
    [19] A. K. Mahapatro, R. Agrawal, and S. Ghosh, “Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3),” J. Appl. Phys., 96, 3583 (2004).
    [20] J. He, L. P. Ma, J. H. Wu, and Y. Yang, “Three-terminal organic memory devices,” J. Appl. Phys., 97, 064507 (2005).
    [21] H. P. Hall, M. A. Awaah, and K. Das, “Deeplevel dominated rectifying contacts for ntype GaN films,” Phys. Stat. Sol. (a), 201, 522 (2004).
    [22] T. W. Kim, S. H. Oh, H. Choi, G. Wang, H. Hwang, D. Y. Kim, and T. Lee, “Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices,” Appl. Phys. Lett., 92, 253308 (2008).
    [23] F. Chen, B. Li, and R. A. Dufresne, “Abrupt current increase due to space-charge-limited conduction in thin nitride-oxide stacked dielectric system,” J. Appl. Phys., 90, 1898 (2001).
    [24] P. Kumar, S. C. Jain, V. Kumar, S. Chand, and R. P. Yandon, “Trap filled limit and high current–voltage characteristics of organic diodes with non-zero Schottky barrier,” J. Phys. D: Appl. Phys., 41, 155108 (2008).
    [25] P. Mark, and W. Helrrich, “Space-charge-limited currents in organic crystals,” J. Appl. Phys., 33, 205 (1962).
    [26] G. Amin, I. Hussain, S. Zaman, N. Bano, O. Nur, and M. Willander, “Current-transport studies and trap extraction of hydrothermally grown ZnO nanotubes using gold Schottky diode,” Phys. Status Solidi A, 207, 748 (2010).

    Chapter 2
    [1] S. W. Culligan, A. C. -A. Chen, J. U. Wallace, K. P. Klubek, C. W. Tang, and S. H. Chen, “Effect of hole mobility through emissive layer on temporal stability of blue organic light-emitting diodes,” Adv. Funct. Mater., 16, 1481 (2006).
    [2] C. T. Lee, L. Z. Yu, and H. Y. Liu, “Optical performance improvement mechanism of multimode-emitted white resonant cavity organic light-emitting diodes,” IEEE Photonics Technol. Lett., 22, 272 (2010).
    [3] L. Z. Yu, X. Y. Jiang, Z. L. Zhang, L. R. Lou, and C. T. Lee, “Investigation of Förster-type energy transfer in organic light-emitting devices with 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethy ljulolidin-4-yl-vinyl) -4H-pyran doped cohost emitting layer,” J. Appl. Phys., 105, 013105 (2009).
    [4] T. H. Liu, C. Y. Iou, and C. H. Chen, “Development of highly stable organic electroluminescent devices with a doped co-host emitter system,” Curr. Appl. Phys., 5, 218 (2005).
    [5] X. Chen, and Y. Wang, “A study of composition distribution at the Ti/Al2O3 interface using the MCs+-Sims technique,” Appl. Surf. Sci., 89, 169 (1995).
    [6] E. Duda, S. Lu, C. L. Liu, Z. Jiang, J. Lerma, A. Barr, A. Thean, M. Orlowski, E. White, and B. Y. Nguyen, “Secondary ion mass spectrometry characterization of source/drain junctions for strained silicon channel metal-oxide-semiconductor field-effect transistors,” J. Vac. Sci. Technol. B, 22, 327 (2004).
    [7] Y. Kang, X. Li, H. Gong, and R. Jiang, “Study on Au diffusion in 0001 undoped wurtzite GaN,” Semicond. Sci. Technol., 18, 607 (2003)
    [8] A. Rajagopal and A. Kahn, “Photoemission spectroscopy investigation of magnesiumAlq3 interfaces,” J. Appl. Phys., 84, 355 (1998).
    [9] S. Hamwi, J. Meyer, T. Winkler, T. Tieal, and Kowalsky, “p-type doping efficiency of MoO3 in organic hole transport materials,” Appl. Phys. Lett., 94, 253307 (2009).
    [10] Q. T. Le, L. Yan, Y. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline)aluminum interfaces,” J. Appl. Phys., 87, 375 (2000).
    [11] N. J. Watkins, and Y. Gao, “Vacuum level alignment of pentacene on LiF/Au,” J. Appl. Phys., 94, 1289 (2003).
    [12] F. Amy, C. Chan, and A. Kahn, “Polarization at the gold/pentacene interface,” Org. Electron., 6, 85 (2005).
    [13] M. Lampert and P. Mark, Current Injection in Solids, (Academic, New York, 1970).
    [14] S. Halder, S. Bhattacharyya, S. B. Krupanidhi, “Electrical characterization of Ba(Zr0.1Ti0.9)O3 thin films grown by pulsed laser ablation technique,” Materials Sci. and Engineering B, 85, 124 (2002).
    [15] D. Ma, I. A. Hummelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. E. Karasz, “Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio,” J. Appl. Phys., 87, 312 (2000).
    [16] H. P. Hall, M. A. Awaah, and K. Das, “Deeplevel dominated rectifying contacts for ntype GaN films,” Phys. Stat. Sol. (a), 201, 522 (2004).
    [17] T. W. Kim, S. H. Oh, H. Choi, G. Wang, H. Hwang, D. Y. Kim, and T. Lee, “Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices,” Appl. Phys. Lett., 92, 253308 (2008).
    [18] F. Chen, B. Li, and R. A. Dufresne, “Abrupt current increase due to space-charge-limited conduction in thin nitride-oxide stacked dielectric system,” J. Appl. Phys., 90, 1898 (2001).
    [19] P. Kumar, S. C. Jain, V. Kumar, S. Chand, and R. P. Yandon, “Trap filled limit and high current–voltage characteristics of organic diodes with non-zero Schottky barrier,” J. Phys. D: Appl. Phys., 41, 155108 (2008).
    [20] P. Mark, and W. Helrrich, “Space-charge-limited currents in organic crystals,” J. Appl. Phys., 33, 205 (1962).
    [21] G. Amin, I. Hussain, S. Zaman, N. Bano, O. Nur, and M. Willander, “Current-transport studies and trap extraction of hydrothermally grown ZnO nanotubes using gold Schottky diode,” Phys. Status Solidi A, 207, 748 (2010).

    Chapter 3
    [1] S. W. Culligan, A. C.-A. Chen, J. U. Wallace, K. P. Klubek, C. W. Tang, and S. H. Chen, “Effect of hole mobility through emissive layer on temporal stability of blue organic light-emitting diodes,” Adv. Funct. Mater., 16, 1481 (2006).
    [2] T. H. Liu, C. Y. Iou, and C. H. Chen, “Development of highly stable organic electroluminescent devices with a doped co-host emitter system,” Curr. Appl. Phys., 5, 218 (2005).
    [3] L. Z. Yu, X. Y. Jiang, Z. L. Zhang, L. R. Lou, and C. T. Lee, “Investigation of Förster-type energy transfer in organic light-emitting devices with 4-(dicyanomethylene)-2-t-butyl-6- (1,1,7,7-tetramethy ljulolidin-4-yl-vinyl)-4H-pyran doped cohost emitting layer,” J. Appl. Phys., 105, 013105 (2009).
    [4] S. H. Li, Z. Xu, G. Yang, L. Ma, and Y. Yang, “Solution-processed poly (3-hexylthiophene) vertical organic transistor,” Appl. Phys. Lett., 93, 213301 (2008).
    [5] L. Ma, and Y. Yang, “Unique architecture and concept for high-performance organic transistors,” Appl. Phys. Lett., 85, 5084 (2004).
    [6] Z. Xu, S. H. Li, L. Ma, G. Li, and Y. Yang, “Vertical organic light emitting transistor,” Appl. Phys. Lett., 91, 092911 (2007).
    [7] C. Pearson, J. H. Ahn, M. F. Mabrook, D. A. Zeze, M. C. Petty, K. T. Kamtekar, C. S. Wang, M. R. Bryce, P. Dimitrakis, and D. Tsoukalas, “Electronic memory device based on a single-layer fluorene-containing organic thin film,” Appl. Phys. Lett., 91, 123506 (2007).
    [8] A. K. Mahapatro, R. Agrawal, and S. Ghosh, “Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3),” J. Appl. Phys., 96, 3583 (2004).
    [9] H. P. Hall, M. A. Awaah, and K. Das, “Deeplevel dominated rectifying contacts for ntype GaN films,” Phys. Stat. Sol. (a), 201, 522 (2004).

    Chapter 4
    [1] P. Guo, Y. W. Dong, X. Ji, Y. X. Lu, and W. Xu, “Nonvolatile multilevel conductance and memory effect in molecule-based devices,” IEEE Electron Device Lett., 28, 572 (2007).
    [2] J. Ouyang, C. W. Chu, D. Sieves, and Y. Yang, “Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells,” Appl. Phys. Lett., 86, 123507 (2005).
    [3] M. Lampert and P. Mark, Current Injection in Solids, (Academic, New York, 1970).
    [4] T. W. Kim, S. H. Oh, H. Choi, G. Wang, H. Hwang, D. Y. Kim, and T. Lee, “Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices,” Appl. Phys. Lett., 92, 253308 (2008).
    [5] K. R. Bambery, R. J. Fleming, and J. T. Holboll, “Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient,” J. Phys. D: Appl. Phys., 34, 3071 (2001).
    [7] L. Z. Yu, and C. T. Lee, “Investigation of three-terminal organic-based devices with memory effect and negative differential resistance,” Appl. Phys. Lett., 95, 103305 (2009).

    無法下載圖示 校內:2015-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE