簡易檢索 / 詳目顯示

研究生: 簡有顯
Chien, Yu-Hsien
論文名稱: 寬頻帶之彈性超材料數值模擬
Numerical Simulation of Elastic Metamaterial with Wide Band-gap
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: 彈性超材料負等效質量密度帶隙
外文關鍵詞: elastic metamaterials, negative effective mass density, band gap
相關次數: 點閱:101下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超材料的特殊機制與其發展性在近年來被廣為討論與研究,相對於電磁超材料與聲學超材料,學者們發現了彈性超材料(elastic metamaterials)在濾波方面能更有發展性。為了使彈性超材料發揮更佳的過濾向量波傳遞特性,因此本文會先介紹波傳的基本理論與其等效參數與波傳特性間的探討,最後再根據上述的理論關係式並透過有限元素分析軟體COMSOL數值分析模擬,建立立方晶格(cubic lattice)與六方晶格(hexagonal lattice)的連體模型作探討,並以其運動模式與等效參數和全域模擬加以驗證。由於噪音與機械共振多屬於低頻波且有衰減較慢的特性,常造成較大影響,因此本文透過晶格尺寸與自然界容易取得的材料加以篩選,提出的模型較著重於能夠產生較低且較寬的帶隙(band gap)頻率範圍,以達到更佳的濾波效果,並透過兩種晶格的比較結果發現六方晶格有較立方晶格還寬的帶隙。

    The mechanism of metamaterials and their development are widely discussed and studied in recent years. Compared with electromagnetic metamaterials and acoustics metamaterials, researchers found that elastic metamaterials can be developed in terms of filtering. In order to have a better filtering property in elastic metamaterials, we will first introduce the basic theory of wave propagation and the concept of effective medium. Two models are proposed, cubic lattice and hexagonal lattice, with finite element analysis to simulate compare the results. Finally, the eigenstates, the effective mass density and wave transmission simulation are used to verify. Noise and mechanical resonance are mostly low frequency waves. The lower frequency of the wave often causes a great impact because of slow attenuation characteristics. In this thesis, we change the lattice size and materials in order to attain a wide band gap elastic metamaterials that can filter out low frequency waves. Based on the results of two lattices, we found that the hexagonal lattice has a wider band gap than that of the cubic lattice.

    中文摘要 i Abstract ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 符號表 xiv 第一章 緒論 1 1.1 文獻回顧與相關研究 1 1.2 研究動機 4 1.3 論文簡介 4 第二章 彈性波傳理論 6 2.1 波的種類介紹 6 2.2 晶格內波傳特性 8 2.2.1 立方系統(cubic system) 11 2.2.2 等向性系統(isotropic system) 13 2.3 布洛赫定理(Bloch’s theorem) 15 2.4 布里淵區(Brillouin zone) 16 第三章 彈性超材料其應用與機制 21 3.1 彈性超材料的應用 21 3.1.1 屏蔽裝置(cloaking devices) 21 3.1.2 地震超材料(seismic metamaterials) 22 3.1.3 濾波(filter) 22 3.2 彈性超材料晶格之等效參數 23 3.3 波傳特性探討 25 3.3.1 立方系統(cubic system) 25 3.3.2 六方系統 28 第四章 彈性超材料立方晶格系統分析 32 4.1 連體模型數值模擬之參數介紹 33 4.1.1 單位晶格之幾何設定 33 4.1.2 單位晶格之材料設定 34 4.1.3 單位晶格之邊界設定 35 4.2 單位晶格頻散圖與其運動行為分析 37 4.3 單位晶格之等效質量密度分析 39 4.4 全域模擬 41 4.4.1 幾何材料與邊界介紹 42 4.5 結果與討論 46 第五章 彈性超材料六方晶格系統分析 48 5.1 連體模型數值模擬之參數介紹 48 5.1.1 單位晶格之幾何設定 49 5.1.2 單位晶格之材料設定 49 5.1.3 單位晶格之邊界設定 50 5.2 單位晶格頻散圖 51 5.3 單位晶格之等效質量密度分析 53 5.4 全域模擬 55 5.4.1 幾何材料與邊界介紹 55 5.5 結果與討論 58 第六章 結論與未來展望 59 6.1 結論 59 6.2 未來展望 60 參考文獻 61

    Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S. and Guenneau, S., Seismic waves damping with arrays of inertial resonators, Extreme Mechanics Letters 8, 30-37 (2016).

    Auld, B. A., Acoustic Fields and Waves in Solids, (Рипол Классик, 1973).

    Baker-Jarvis, J., Vanzura, E. J. and Kissick, W. A., Improved technique for determining complex permittivity with the transmission/reflection method, IEEE Transactions on Microwave Theory and Techniques 38, 1096-1103 (1990).

    Bloch, F., Über die quantenmechanik der elektronen in kristallgittern, Zeitschrift für Physik A Hadrons and Nuclei 52, 555-600 (1929).

    Brillouin, L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices (Courier Corporation, 2003).

    Chan, C., Li, J. and Fung, K. H., On extending the concept of double negativity to acoustic waves, Journal of Zhejiang University Science A 7, 24-28 (2006).

    Cheng, Y., Xu, J. and Liu, X., One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus, Physical Review B 77, 045134 (2008).

    Chui, S. and Lin, Z., Long-wavelength behavior of two-dimensional photonic crystals, Physical Review E 78, 065601 (2008).

    Cummer, S. A. and Schurig, D., One path to acoustic cloaking, New Journal of Physics 9, 45 (2007).

    Ding, Y., Liu, Z., Qiu, C. and Shi, J., Metamaterial with simultaneously negative bulk modulus and mass density, Physical Review Letters 99, 093904 (2007).

    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nature Materials 5, 452-456 (2006).

    Huang, H. and Sun, C., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New Journal of Physics 11, 013003 (2009).

    Huang, H. and Sun, C., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philosophical Magazine 91, 981-996 (2011).

    Huang, H., Sun, C. and Huang, G., On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science 47, 610-617 (2009).

    Kittel, C., Introduction to Solid State Physics, (Wiley, 2005).

    Kushwaha, M. S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B., Acoustic band structure of periodic elastic composites, Physical Review Letters 71, 2022 (1993).

    Lai, Y., Wu, Y., Sheng, P. and Zhang, Z.-Q., Hybrid elastic solids, Nature Materials 10, 620 (2011).

    Lazarov, B. S. and Jensen, J. S., Low-frequency band gaps in chains with attached non-linear oscillators, International Journal of Non-Linear Mechanics 42, 1186-1193 (2007).

    Li, J. and Chan, C., Double-negative acoustic metamaterial, Physical Review E 70, 055602 (2004).

    Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T. and Soukoulis, C. M., Magnetic response of metamaterials at 100 terahertz, Science 306, 1351-1353 (2004).

    Liu, A., Zhu, R., Liu, X., Hu, G. and Huang, G., Multi-displacement microstructure continuum modeling of anisotropic elastic metamaterials, Wave Motion 49, 411-426 (2012).

    Liu, X., Hu, G., Huang, G. and Sun, C., An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters 98, 251907 (2011).

    Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chan, C. T. and Sheng, P., Locally resonant sonic materials, Science 289, 1734-1736 (2000).

    Lu, M.-H., Feng, L. and Chen, Y.-F., Phononic crystals and acoustic metamaterials, Materials Today 12, 34-42 (2009).

    Ma, G., Fu, C., Wang, G., Del Hougne, P., Christensen, J., Lai, Y. and Sheng, P., Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials, Nature Communications 7, 13536 (2016).

    Milton, G. W. and Willis, J. R. (2007). On modifications of Newton's second law and linear continuum elastodynamics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society.

    Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M., Large scale mechanical metamaterials as seismic shields, New Journal of Physics 18, 083041 (2016).

    Pendry, J. B., Negative refraction makes a perfect lens, Physical Review Letters 85, 3966 (2000).

    Pendry, J. B., Holden, A., Stewart, W. and Youngs, I., Extremely low frequency plasmons in metallic mesostructures, Physical Review Letters 76, 4773-4776 (1996).

    Pendry, J. B., Holden, A. J., Robbins, D. and Stewart, W., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47, 2075-2084 (1999).

    Pennec, Y., Djafari‐Rouhani, B., Larabi, H., Vasseur, J. and Hladky‐Hennion, A. C., Phononic crystals and manipulation of sound, Physica Status Solidi C 6, 2080-2085 (2009).

    Royer, D. and Dieulesaint, E., Elastic Waves in Solids: Free and Guided Propagation. vol. 1, (Springer-Verlag, 2000).

    Sakoda, K., Optical Properties of Photonic Crystals, (Springer Science & Business Media, 2004).

    Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, (Springer Science & Business Media, 2006).

    Sheng, P., Zhang, X., Liu, Z. and Chan, C. T., Locally resonant sonic materials, Physica B: Condensed Matter 338, 201-205 (2003).

    Smith, D., Schultz, S., Markoš, P. and Soukoulis, C., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Physical Review B 65, 195104 (2002).

    Smith, D. R., Pendry, J. B. and Wiltshire, M. C., Metamaterials and negative refractive index, Science 305, 788-792 (2004).

    Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G. and Zhang, X., Three-dimensional optical metamaterial with a negative refractive index, Nature 455, 376-379 (2008).

    Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi 10, 509-514 (1968).

    Vincent, J., LX. On the construction of a mechanical model to illustrate Helmholtz's theory of dispersion, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 46, 557-563 (1898).

    Wu, Y. and Zhang, Z.-Q., Dispersion relations and their symmetry properties of electromagnetic and elastic metamaterials in two dimensions, Physical Review B 79, 195111 (2009).

    Yao, S., Zhou, X. and Hu, G., Experimental study on negative effective mass in a 1D mass–spring system, New Journal of Physics 10, 043020 (2008).

    Zhu, R., Huang, H., Huang, G. and Sun, C., Microstructure continuum modeling of an elastic metamaterial, International Journal of Engineering Science 49, 1477-1485 (2011).

    Zhu, R., Liu, X., Huang, G., Huang, H.-H. and Sun, C., Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density, Physical Review B 86, 144307 (2012).

    張博威, 具多重負頻帶之彈性超材料數值模擬, 成功大學土木工程學系學位論文 1-76 (2013).

    寧彥傑, 具負等效質量慣性矩之微極彈性模型設計, 成功大學土木工程學系學位論文 1-91 (2016).

    下載圖示 校內:2019-07-28公開
    校外:2019-07-28公開
    QR CODE