簡易檢索 / 詳目顯示

研究生: 曾崴聖
Tseng, Wei-Sheng
論文名稱: 鋼筋混凝土版受衝擊荷載之破壞分析
Failure Analysis of Reinforced Concrete Plates Subjected to Impact Loading
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 戴毓修
Tai, Yuh-Shiou
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 75
中文關鍵詞: LS-DYNA有限元素衝擊荷載鋼筋混凝土板
外文關鍵詞: Finite element, LS-DYNA, impact loads, Reinforced Concrete Plates
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用LS-DYNA有限元素分析軟體,針對投射體在一定速下對純混凝土靶體的侵徹分析進行模擬,並與文獻中試驗結果進行比較,以驗證本文分析的可靠性及混凝土參數設定的正確性。其次針對衝擊荷載作用下鋼筋混凝土板之破壞模式與動態反應進行分析,探討鋼筋混凝土板的破壞影響因素如,鋼筋比、彈體速度、侵徹角度來進行模擬,找出這些因素影響之規律。研究結果顯示,當鋼筋混凝土板之配筋率增加、彈體速度下降或侵徹角度增加,都能減少結構體的破損情況。最後整理歸納,用以提供未來相關工程應用及學術研究上之參考。

    In this study will use the the nonlinear finite element software LS-DYNA. Build a similar model that the reference of the experiment, to simulate the projectiles penetration the pure concrete targets, and compared its results to verify the reliability of software and the correct of concrete’s parameter.
    And then study the failure analysis of reinforced concrete plates subjected to impact loading, to research the damaging effects of factors such as, steel ratio, speed of projectile and angle of penetration, to identify the law of affection factors.
    The results show that reinforcement ratio increased, decreased projectile velocity, penetration angle increases, can improve the situation of the structure destruction.
    Finally collate those data to provide a valuable reference for engineering designers and researchers to precede the structural dynamic analysis.

    摘要 ii ABSTRACT iii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 符號表 xii 第一章、緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究方法 2 1.4論文架構 3 第二章、鋼筋與混凝土的力學特性 4 2.1混凝土的力學行為 4 2.1.1混凝土單軸行為 4 2.1.2混凝土雙軸行為 5 2.1.3混凝土三軸行為 5 2.2混凝土抗壓試驗之應力-應變關係 6 2.3鋼筋的力學行為 7 第三章、鋼筋混凝土受衝擊時之力學行為與破壞機制 13 3.1 衝擊現象與影響 14 3.2 衝擊問題的分類 15 3.3 材料結構受衝擊損傷基本理論 16 3.4 彈體衝擊效應與破壞型態 17 3.5 混凝土受衝擊之理論分析 19 3.5.1混凝土衝擊之特性 19 3.5.2常用的彈體貫入深度經驗公式 21 第四章、鋼筋混凝土版承受衝擊荷重之分析 29 4.1 LS-DYNA軟體介紹 29 4.2 分析模型描述 29 4.2.1幾何尺寸與網格劃分 30 4.2.2初始條件與邊界條件 30 4.2.3材料模型 31 4.3結果與討論 33 4.4混凝土版受衝擊荷重之分析 35 4.4.1混凝土板模型描述與收斂性分析 35 4.5鋼筋材料模型建立 35 4.6鋼筋混凝土板靶破壞模擬分析 37 4.6.1配筋率對結構之影響 37 4.6.2投射體速度對結構之影響 38 4.6.3投射體偏角對結構之影響 39 4.6.4非剛體之投射體對結構之影響 39 4.7小結 40 第五章、結論與建議 72 5.1 結論 72 5.2 未來研究建議 72 參考文獻 74

    [1]W. F. Chen, and A. F. Saleeb, Constitutive Equations for Engineering Materials: Elsevier B.V., 1994.
    [2]J.-Y. Wu, “Failure Analysis of the Reinforced Concrete Plate Subjected to Air Blast Loading,” Master's Thesis, Civil Engineering, NCKU, 2010.
    [3]A. Task, Committee on Concrete and Masonry Structure State of the Art Report on Finite Element Analysis of Reinforced Concrete, New York, 1982.
    [4]R. P., and C. M., “Composite of Reactive Powder Concrete,” Cement and Concrete Research, vol. 25, no. 7, 1995.
    [5]B. G.G., Shearing Strength of Concrete under High Triaxial Stress Computation of Mohr’s Envelope as a Curve, 1949.
    [6]朱伯發、董振祥, 鋼筋混凝土非線性分析: 同濟大學出版社, 1984.
    [7]L. P. Saenz, Discussion of Equation for the stress-strain curve of concrete by P. Desayi, and S. Krishnan, vol. 61, 1964.
    [8]過鎮海, “混凝土應力應變全曲線試驗研究,” 建築學報, vol. 12, 1981.
    [9]Building Code Requirements for Reinforced Concrete, American Concrete Institute, Detroit, Michigan, 2005.
    [10]錢偉長, 穿甲力學: 國防工業出版社, 1996.
    [11]H.-f. Liu, “Dynamic Analyses of Fiber-Reinforced Reactive Powder Concrete Plates,” Master's Thesis, Civil Engineering, NCKU, 2006.
    [12]W. Goldsmith, “Non-ideal projectile impact on targets,” International Journal of Impact Engineering, vol. 22, no. 2-3, pp. 95-395, 1999.
    [13]馬曉青、韓峰, 高速碰撞動力學, 北京: 國防工業出版社, 1998.
    [14]R. L. MecNeil, “An Approach for Estimating Soil Attachment during Penetration Events,” SAND, vol. 80, pp. 2667, 1980.
    [15]R. P. Kennedy, “A review of procedures for the analysis and design of concrete structures to resist missile impact effects,” Nuclear Engineering and Design, vol. 37, no. 2, pp. 183-203, 1976.
    [16]R. S. Bemard, Depth and motion prediction for each penetrators, U.S. Army Waterways Experiment Station. , Vicksburg, 1978.
    [17]A. K. Kar, “Projectile penetration into buried structures,” Journal of Structure Division, vol. 11, pp. 125-139, 1978.
    [18]M. E. Backman, and W. Goldsmith, “The Mechanics of Penetration of Projectiles into Targets,” International Journal of Engineering Science, vol. 16, pp. 1-99, 1978.
    [19]白金澤, LS-DYNA3D理論基礎與實例分析, 北京: 科學出版社, 2005.
    [20]J. K. Gran, and D. J. Frew, “In-target radial stress measurements from penetration experiments into concrete by ogive-nose steel projectiles,” International Journal of Impact Engineering, vol. 19, no. 8, pp. 715-726, 1997.
    [21]T. J. Holmquist, G. R. Johnson, and W. H. Cook, A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures,, Qucbec City,Canada, 1993.
    [22]G. R. Johnson, Computed radial stresses in a concrete target penetrated by a steel projectile,, 1998.
    [23]G. R. Johnson, and W. H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,,” Journal of Engineering Fracture Mechanics, vol. 21, no. 1, pp. 31-48, 1985.
    [24]C. Y. Tham, “Numerical and empirical approach in predicting the penetration of a concrete target by an ogive-nosed projectile,” Finite Elements in Analysis and Design, vol. 42, no. 14-15, pp. 1258-1268, 2006.
    [25]C. W. Young, Penetration equations, SAND97-2426, Sandia National Laboratories, Albuquerque, NM, 1997.
    [26]M. J. Forrestal, B. S. Altman, J. D. Cargile et al., “An empirical equation for penetration depth of ogive-nose projectiles into concrete targets,” International Journal of Impact Engineering, vol. 15, no. 4, pp. 395-405, 1994.
    [27]C. G.R., and P.S., Symonds Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams, 1985.
    [28]LS-DYNA Version 971 User’s Manual, 2007.

    下載圖示 校內:2013-08-30公開
    校外:2016-08-30公開
    QR CODE