簡易檢索 / 詳目顯示

研究生: 陳汝欣
Chen, Ju Hsin
論文名稱: 華人青少年多向度性格量表之電腦適性測驗發展
Developing Multidimensional Computerized Adaptive Testing for the Multidimensional Personality Inventory for Chinese Youth
指導教授: 陳俊宏
Chen, Jyun Hong
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 85
中文關鍵詞: 多向度試題反應理論多向度等級反應模型多向度電腦化適性測驗性格測驗
外文關鍵詞: multidimensional item response theory, multidimension graded response model, multidimensional computerized adaptive testing, personality test
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 華人青少年多向度性格量表(multidimensional personality inventory for Chinese youth,MPICY)是學生自我探索的重要工具,然因量表題數偏多,受試者作答可能因疲憊而受到影響,為確保測驗有效性,提升施測效率有其必要性。電腦適性測驗(computerized adaptive testing, CAT)是已知最有效率的測驗形式之一,CAT根據受試者能力選擇適合試題進行施測的特性,能有效提升施測效率。因此,本研究欲發展MPICY的多向度電腦適性測驗(multidimensional computerized adaptive testing, MCAT),亦即MPICY-CAT,以提升MPICY的施測效能。
    MCAT的建立通常以多向度試題反應理論(multidimensional item response theory, MIRT)為基礎,透過MIRT對測驗資料的分析,提供MCAT建立所需試題參數與測驗心理計量特質等訊息。因此,為發展MPICY-CAT,本論文進行以下三個研究:研究一使用MIRT分析MPICY量表,經由模型比較找出最適資料模型—多向度等級反應模型(multidimensional graded response model),並據此模型估計試題、能力參數及試題訊息函數,建立MPICY-CAT施測所需算則。研究二在MPICY-CAT下,比較Determinant rule(D-rule)與Trace of the information rule (T-rule)選題法在三種信度水準(r=0.70、0.80、0.85)上的表現。研究發現在所有信度水準上,D-rule 在bias、RMSE與相關係數等指標的表現皆優於T-rule,因此擇定D-rule為MPICY-CAT之選題法。研究三以實務資料驗證MPICY-CAT之效能,結果指出MPICY-CAT能在精確估計受試者性格能力水準的前提下,節省44~80%的試題數。綜之,本研究所發展之MPICY-CAT具有極高的測量效率,有助於提升MPICY應用於各領域進行性格測量。

    The multidimensional personality inventory for Chinese youth (MPICY) is essential for student’s self-exploration. However, its relatively long test length (i.e., 98 items) has the potential to cause student fatigue, affecting the validity of their responses. To ensure test validity, it is necessary to enhance the efficiency of MPICY administration. Computerized adaptive testing (CAT), which selects suitable items based on the examinee's ability, can effectively improve testing efficiency. Therefore, this study aims to develop a multidimensional computerized adaptive testing version of MPICY (MPICY-CAT) to enhance the test efficiency of MPICY.
    The dissertation comprises three studies. Study 1 employs MIRT to analyze the MPICY, revealing that the multidimensional graded response model (MGRM) is the best-fitting model for the data through model comparison. Based on MGRM, item parameters, ability parameters, and item information functions are obtained. Study 2 finds that, with the MPICY-CAT, the Determinant rule (D-rule) outperforms the Trace of the information rule (T-rule) in terms of bias, RMSE, and correlation coefficients across the three levels of reliability (r = 0.70, 0.80, 0.85). Therefore, the D-rule is chosen as the item selection method for MPICY-CAT. Study 3 uses empirical test data to investigate the efficiency of MPICY-CAT. The results indicate that MPICY-CAT can precisely estimate the personality levels of examinees, saving 44-80% of the items while maintaining the required precision level. In conclusion, the MPICY-CAT developed in this study demonstrates excellent measurement efficiency, enhancing the applicability of MPICY in various fields of personality assessment.

    第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第二章 文獻回顧 4 第一節 華人青少年多向度性格量表 4 壹、 華人性格理論 4 貳、 華人性格測驗發展 5 第二節 多向度試題反應理論 7 壹、 IRT基本概念 8 貳、 MIRT基本概念 8 第三節 多向度試題反應模型 9 壹、 多向度一般部分計分模型(MGPCM)及其特例 10 貳、 多向度等級反應模型(MGRM) 13 第四節 MCAT與選題法 15 壹、 MCAT原理 15 貳、 選題規則 16 參、 MCAT選題方法 17 第三章 研究方法與結果 20 研究一、MIRT分析 21 壹、 研究方法 21 貳、 研究結果 24 研究二、MCAT模擬:生成資料 38 壹、 研究方法 39 貳、 研究結果 41 研究三、MCAT施測:真實資料 49 壹、 研究方法 49 貳、 研究結果 50 第四章 結果討論與結論 59 第一節 結果討論 59 第二節 未來研究建議 62 參考文獻 64 附錄一 MPICY量表之試題參數 68 附錄二 試題特徵曲線 71

    許功餘(2008)。華人性格特質七因素模式的結構不變性之檢驗。 本土心理學刊。
    許功餘(2017)。華人青少年多向度性格量表的構念效度之檢核(E10304)【原始數據】取自中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫。https://doi.org/10.6141/TW-SRDA-E10304-1
    楊國樞(1999)。 中國人之基本性格向度, 結構及效應的系統性研究。 http://ntur.lib.ntu.edu.tw/handle/246246/9589
    黃金蘭、林以正、葉怡玉(2006)。華人七大基本性格是否具有心理實質性?“提取引發遺忘效果”之檢驗。本土心理學研究,(26),111-140。https://www.airitilibrary.com/Article/Detail?DocID=10298282-200608-x-26-111-140-a
    Ackerman, T. A. (1991). The use of unidimensional parameter estimates of multidimensional items in adaptive testing. Applied Psychological Measurement, 13, 113-127. https://doi.org/10.1177/014662169101500103
    Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561-573. https://doi.org/10.1177/014662167800200413
    Bashkov, B. M., & DeMars, C. E. (2017). Examining the performance of the Metropolis–Hastings Robbins–Monro algorithm in the estimation of multilevel multidimensional IRT models. Applied psychological measurement, 41(5), 323-337. https://doi.org/10.1177/0146621616688923
    Berger, M. P., & Wong, W. K. (2005). Applied Optimal Designs. https://doi.org/10.1002/0470857005
    Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological methods & research, 21(2), 230-258.https://doi.org/10.1177/0049124192021002005
    Cattell, R. B. (1943). The description of personality: Basic traits resolved into clusters. The journal of abnormal and social psychology, 38(4), 476. https://doi.org/10.1037/h0054116
    Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of statistical Software, 48, 1-29. https://doi.org/10.18637/jss.v048.i06
    Chalmers, R. P. (2016). Generating adaptive and non-adaptive test interfaces for multidimensional item response theory applications. Journal of Statistical Software, 71, 1-38. https://doi.org/10.18637/jss.v071.i05
    Cote, J., Netemeyer, R., & Bentler, P. (2001). Improving model Fit by correlating errors. Journal of Consumer Psychology, 10(1/2), 87-88. http://dx.doi.org/10.2307/1480490
    Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and statistical psychology, 38(1), 67-86. https://doi.org/10.1111/j.2044-8317.1985.tb00817.x
    Fisher R. A. 1922On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character222309–368. http://doi.org/10.1098/rsta.1922.0009
    Goldberg, L. R. (1981). Language and individual differences: The search for universals in personality lexicons. Review of personality and social psychology, 2(1), 141-165.
    Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory (Vol. 2). Sage.
    Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55. http://dx.doi.org/10.1080/10705519909540118
    Jiang, S., Wang, C., & Weiss, D. J. (2016). Sample size requirements for estimation of item parameters in the multidimensional graded response model. Frontiers in psychology, 7, 109. https://doi.org/10.3389/fpsyg.2016.00109
    Kang, T., & Chen, T. T. (2008). Performance of the generalized S‐X2 item fit index for polytomous IRT models. Journal of Educational Measurement, 45(4), 391-406. https://doi.org/10.1111/j.1745-3984.2008.00071.
    Lima Passos, V., Berger, M. P., & Tan, F. E. (2007). Test design optimization in CAT early stage with the nominal response model. Applied Psychological Measurement, 31(3), 213-232. https://doi.org/10.1177/0146621606291571
    Lord, F. M. (1980). Applications of item response theory to practical testing problems. lawrence eribaum associates. Inc, Hillsdale, NJ.
    Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174. https://doi.org/10.1007/BF02296272
    Meijer, R. R., & Nering, M. L. (1999). Computerized adaptive testing: Overview and introduction. Applied Psychological Measurement, 23(3), 187–194. https://doi.org/10.1177/01466219922031310
    Mulder, J., & Van der Linden, W. J. (2009). Multidimensional adaptive testing with optimal design criteria for item selection. Psychometrika, 74, 273-296.
    Muraki, E., & Carlson, J. E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19(1), 73-90. https://doi.org/10.1177/01466216950190010
    Norman, W. T. (1963). Toward an adequate taxonomy of personality attributes: Replicated factor structure in peer nomination personality ratings. The journal of abnormal and social psychology, 66(6), 574. https://psycnet.apa.org/doi/10.1037/h0040291
    Orlando, M., & Thissen, D. (2003). Further investigation of the performance of S-X2: An item fit index for use with dichotomous item response theory models. Applied Psychological Measurement, 27(4), 289-298. https://doi.org/10.1177/0146621603027004004
    Pukelsheim, F. (2006). Optimal design of experiments. Society for Industrial and Applied Mathematics.
    De Raad, B., & Mlačić, B. (2017). The lexical foundation of the big five factor model. The Oxford handbook of the five factor model, 191-216. https://doi.org/10.1093/oxfordhb/9780199352487.013.12
    Luecht, R. M. (1996). Multidimensional computerized adaptive testing in a certification or licensure context. Applied psychological measurement, 20(4), 389-404. https://doi.org/10.1177/014662169602000406
    R Core Team (2023). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
    Reckase, M. D. (2009). Multidimensional Item Response Theory (Statistics for Social and Behavioral Sciences). Springer. http://dx.doi.org/10.1007/s11336-011-9212-x
    Roberts, J. S., Donoghue, J. R., & Laughlin, J. E. (1999). Estimating Parameters in the Generalized Graded Unfolding Model: Sensitivity to the Prior Distribution Assumption and the Number of Quadrature Points Used.
    Segall, D.O. Multidimensional adaptive testing. Psychometrika 61, 331–354 (1996). https://doi.org/10.1007/BF02294343
    Segall, D. O. (2009). Principles of multidimensional adaptive testing. In Elements of adaptive testing (pp. 57-75). New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-85461-8_3
    S. D. SILVEY, D. M. TITTERINGTON, A Lagrangian approach to optimal design, Biometrika, Volume 61, Issue 2, August 1974, Pages 299–302, https://doi.org/10.1093/biomet/61.2.299
    Tseng, F. L. (2000). Multidimensional adaptive testing using the weighted likelihood estimation (Doctoral dissertation, University of Pittsburgh).
    Wang, W. C., & Chen, P.-H. (2004). Implementation and measurement efficiency of multidimensional computerized testing. Applied Psychological Measurement, 28, 295-316. https://doi.org/10.1177/0146621604265938
    Weiss, D. J., & McBride, J. R. (1984). Bias and information of Bayesian adaptive testing. Applied Psychological Measurement, 8(3), 273-285. https://doi.org/10.1177/014662168400800303
    Yao, L., & Schwarz, R. D. (2006). A multidimensional partial credit model with associated item and test statistics: An application to mixed-format tests. Applied psychological measurement, 30(6), 469-492. https://doi.org/10.1177/0146621605284537
    Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02

    下載圖示 校內:2025-07-16公開
    校外:2025-07-16公開
    QR CODE