| 研究生: |
苑輔元 Yuan, Fu-Yuan |
|---|---|
| 論文名稱: |
流化床中木顆粒與廢塑膠純氧燃燒之研究 A Study of Wood Pellet and Waste Plastics Oxy-Combustion in a Fluidized Bed Reactor |
| 指導教授: |
陳冠邦
Chen, Guan-Bang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 木顆粒 、聚乙烯(Polyethylene) 、純氧燃燒 、氣體分級 、鼓泡式流化床燃燒爐 |
| 外文關鍵詞: | Wood pellets, Polyethylene, Oxy-combustion, Secondary oxygen ratio, Bubbling fluidized bed combustor |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
木顆粒為常見的農業廢棄物之一,目前台灣主要的處理方式多以掩埋為主,但台灣土地有限且過度的掩埋會造成環境的破壞問題,而廢塑料則來自於化石燃料,其不易降解,無法使用掩埋方式處理,目前多以焚燒處理為主流,但也衍生出了重金屬、戴奧辛、飛灰等對人體與環境有害的相關問題,因此需以更有效率且對環境更友善的方式來處理。
純氧燃燒(Oxy-Combustion)被認為是目前最有潛力的碳捕捉與封存(CCS)技術之一,相較於其他碳捕捉技術而言,純氧燃燒具有較高的碳捕捉效率,且同時能提高燃燒效率,降低NOx等污染物排放等優點。
本研究主要探討木顆粒與聚乙烯(PE)於流化床的純氧燃燒特性,首先進行燃料特性分析,包括熱值分析、近似分析、元素分析以及利用熱重分析儀探討燃料之受熱行為與計算活化能,並探討其協同效應。最後則將木顆粒與廢塑膠以不同比例混合,利用鼓泡式流體化床進行氧氣/二氧化碳下共燒實驗,實驗參數包括燃料混摻比:0-40%,氧氣濃度:25-%40%,二次氣體(O2)比例:0-30%,探討不同條件下的煙氣氣體成分、濃度以及爐溫分佈曲線,並進行可用能分析。研究結果顯示木顆粒與聚乙烯之協同效應可分為三個階段,分別為240℃-400℃的促進效應、400℃-480℃的抑制效應以及480℃-560℃之促進效應。使用Coats-Redfern數學模型進行活化能分析,燃料整體活化能在70-90 kJ/mol之間,而隨著O2濃度提升,活化能亦顯示出增加的趨勢。在流化床實驗方面,固定燃料混摻比與二次氣體比例的條件下,與空氣條件相比,25%O2/75%CO2條件下將導致流化床較低的密相區溫度,而透過提高氧氣濃度,在30%O2/70%CO2條件下可得到與空氣相近之密相區溫度。O2濃度的增加,使NO排放提升。二次氧氣比例增長爐體內氣體停滯時間,使NO濃度降低。此外,O2濃度的增長,將使CO濃度下降,但於40%O2條件下可能因床材局部燒結反而導致CO的增長。流化床燃燒在無二次氧氣比例時最高可用能發生在25%O2/75%CO2、40%PE時為55.67%,最低則發生在木顆粒空氣燃燒條件下,可用能為24%。可用能隨二次氧氣比例提升而增加,最大可用能發生在30%BR、30%SOR條件下為60.1%,最低可用能發生在30%BR、0%SOR條件下為43.02% 。
This study investigates the oxy-fuel combustion of wood pellets and polyethylene (PE) in a fluidized bed combustor. First, fuel properties were analyzed, and thermal behavior through thermogravimetric analysis (TGA), along with the calculation of activation energy and exploration of synergistic effects. Finally, co-combustion of wood pellets and PE were conducted in a bubbling fluidized bed. The experimental parameters included fuel blending ratios, oxygen concentration, and secondary oxygen ratio. The study examined the composition and concentration of flue gas under different conditions, as well as the furnace temperature distribution, and performed exergy efficiency analysis. The results show that the synergistic effects of wood pellets and polyethylene can be divided into three stages: a promotion effect between 240°C-400°C, an inhibition effect between 400°C-480°C, and a promotion effect between 480°C-560°C. Activation energy analysis revealed that the overall activation energy of the fuel ranged between 70-90 kJ/mol, and increased with the O2 concentration. In the fluidized bed experiments, a temperature in the dense phase zone similar to that of air conditions could be achieved under the 30% O2/70% CO2 condition. The increase in O2 concentration led to higher NO emissions. The increase in the secondary oxygen ratio prolonged the gas residence time within the furnace, which resulted in a decrease in NO concentration. Additionally, the increase in O2 concentration led to a decrease in CO concentration, but under 40% O2 conditions, local sintering of the bed material may instead cause an increase in CO. The highest exergy efficiency in fluidized bed combustion without a secondary oxygen ratio occurred at 25% O2/75% CO2 and 40% PE, reaching 55.67%. Exergy efficiency increased with the secondary oxygen ratio, with the maximum exergy efficiency of 60.1% occurring at 30% BR and 30% SOR conditions.
1. Bp, B., Statistical review of world energy 2022. 2023.
2. Liu, Z., et al., Monitoring global carbon emissions in 2022. Nature Reviews Earth & Environment, 2023. 4(4): p. 205-206.
3. Masson-Delmotte, V., et al., Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2021. 2.
4. 台灣經濟部能源局, 111年台灣能源供給概況. 2023.
5. 台灣經濟部能源局, 能源轉型白皮書. 2020.
6. Wu, Y., et al., Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review. Renewable Energy, 2022.
7. Saidur, R., et al., A review on biomass as a fuel for boilers. Renewable and sustainable energy reviews, 2011. 15(5): p. 2262-2289.
8. Vassilev, S.V., C.G. Vassileva, and V.S. Vassilev, Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 2015. 158: p. 330-350.
9. Zhou, C., et al., Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage. Bioresource technology, 2016. 218: p. 418-427.
10. Naqvi, S.R., et al., Applications of machine learning in thermochemical conversion of biomass-A review. Fuel, 2023. 332: p. 126055.
11. Agency, U.S.E.P., Wood: Material-Specific Data 2018.
12. Demirbas, T. and C. Demirbas, Fuel properties of wood species. Energy Sources, Part A, 2009. 31(16): p. 1464-1472.
13. Ritchie, H. and M. Roser, Plastic pollution. Our World in Data, 2018.
14. Geyer, R., J.R. Jambeck, and K.L. Law, Production, use, and fate of all plastics ever made. Science advances, 2017. 3(7): p. e1700782.
15. Plastics-the facts 2022. PLASTICS EUROPE, 2022.
16. MacLeod, M., et al., The global threat from plastic pollution. Science, 2021. 373(6550): p. 61-65.
17. 環境資訊中心. 2022.
18. Dong, J., et al., Comparison of municipal solid waste treatment technologies from a life cycle perspective in China. Waste Management & Research, 2014. 32(1): p. 13-23.
19. Wong, S., et al., Current state and future prospects of plastic waste as source of fuel: A review. Renewable and sustainable energy reviews, 2015. 50: p. 1167-1180.
20. Energy, S.P., Technology Roadmap. 2014, Technical Report, IEA, September 2014. Available online: https://www. iea ….
21. Tan, Y., et al., Property impacts on Carbon Capture and Storage (CCS) processes: A review. Energy Conversion and Management, 2016. 118: p. 204-222.
22. Damen, K., et al., A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Progress in energy and combustion science, 2006. 32(2): p. 215-246.
23. Kaggerud, K.H., O. Bolland, and T. Gundersen, Chemical and process integration: Synergies in co-production of power and chemicals from natural gas with CO2 capture. Applied thermal engineering, 2006. 26(13): p. 1345-1352.
24. Thiruvenkatachari, R., et al., Post combustion CO2 capture by carbon fibre monolithic adsorbents. Progress in Energy and Combustion Science, 2009. 35(5): p. 438-455.
25. Olajire, A.A., CO2 capture and separation technologies for end-of-pipe applications–A review. Energy, 2010. 35(6): p. 2610-2628.
26. Mendes, D., et al., The water‐gas shift reaction: from conventional catalytic systems to Pd‐based membrane reactors—a review. Asia‐Pacific Journal of Chemical Engineering, 2010. 5(1): p. 111-137.
27. Gibbins, J. and H. Chalmers, Carbon capture and storage. Energy policy, 2008. 36(12): p. 4317-4322.
28. Hu, Y., N. Kobayashi, and M. Hasatani, The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio. Fuel, 2001. 80(13): p. 1851-1855.
29. Duan, L., et al., O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed. International Journal of Greenhouse Gas Control, 2011. 5(4): p. 770-776.
30. Czakiert, T., et al., Combustible matter conversion in an oxy-fuel circulating fluidized-bed (CFB) environment. Energy & fuels, 2012. 26(9): p. 5437-5445.
31. Boot-Handford, M.E., et al., Carbon capture and storage update. Energy & Environmental Science, 2014. 7(1): p. 130-189.
32. Xiong, J., H. Zhao, and C. Zheng, Exergy analysis of a 600 MWe oxy-combustion pulverized-coal-fired power plant. Energy & Fuels, 2011. 25(8): p. 3854-3864.
33. Liu, H., et al., A thermogravimetric analysis of co-combustion characteristics of biomass and coal in an O2/CO2 atmosphere. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015. 37(22): p. 2451-2457.
34. Ahn, S., G. Choi, and D. Kim, The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition. Biomass and bioenergy, 2014. 71: p. 144-154.
35. Chansa, O., Z. Luo, and C. Yu, Study of the kinetic behaviour of biomass and coal during oxyfuel co-combustion. Chinese Journal of Chemical Engineering, 2020. 28(7): p. 1796-1804.
36. Zevenhoven, R., J. Fagerlund, and J.K. Songok, CO2 mineral sequestration: developments toward large‐scale application. Greenhouse Gases: Science and Technology, 2011. 1(1): p. 48-57.
37. Hayhurst, A. and A. Lawrence, The amounts of NOx and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char. Combustion and flame, 1996. 105(3): p. 341-357.
38. Winter, F., et al. The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions. in Symposium (international) on combustion. 1996. Elsevier.
39. Glarborg, P., A. Jensen, and J.E. Johnsson, Fuel nitrogen conversion in solid fuel fired systems. Progress in energy and combustion science, 2003. 29(2): p. 89-113.
40. Ersoy, L., et al., Circulating fluidized bed hydrodynamics with air staging: an experimental study. Powder Technology, 2004. 145(1): p. 25-33.
41. Ulusoy, B., et al., Interactions in NOX chemistry during fluidized bed co-combustion of residual biomass and sewage sludge. Fuel, 2021. 294: p. 120431.
42. Normann, F., et al., Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 2009. 35(5): p. 385-397.
43. Guedea, I., et al., Conversion of large coal particles under O2/N2 and O2/CO2 atmospheres—Experiments and modeling. Fuel processing technology, 2013. 112: p. 118-128.
44. Guedea, I., et al., On the modeling of oxy-coal combustion in a fluidized bed. Chemical engineering journal, 2013. 228: p. 179-191.
45. Astm, Standard Test Method for Gross Calorific Value of Coal and Coke by the Adiabatic Bomb Calorim. 2015.
46. Wang, Z., et al., Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Progress in Energy and Combustion Science, 2021. 84: p. 100899.
47. Naqvi, S.R., et al., Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renewable energy, 2019. 131: p. 854-860.
48. Lin, Y., et al., The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis. Thermochimica Acta, 2017. 653: p. 71-78.
49. López, R., et al., Differences between combustion and oxy-combustion of corn and corn–rape blend using thermogravimetric analysis. Fuel processing technology, 2014. 128: p. 376-387.
50. López, R., et al., Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis. Energy, 2014. 74: p. 845-854.
51. Zhang, Y., et al., Exergy analysis of biomass utilization via steam gasification and partial oxidation. Thermochimica acta, 2012. 538: p. 21-28.
52. Basu, P., Combustion and gasification in fluidized beds. 2006: CRC press.
53. Geldart, D., Types of gas fluidization. Powder technology, 1973. 7(5): p. 285-292.
54. Liu, Q., et al., Experimental tests on co-firing coal and biomass waste fuels in a fluidised bed under oxy-fuel combustion. Fuel, 2021. 286: p. 119312.
55. Darton, R.C., et al., BUBBLE GROWTH DUE TO COALESCENCE IN FLUIDISED BEDS. 1977.
56. Schmid, J., et al. Cold flow model investigation on a modified riser with enhanced gas-solid contact–locating the regions of operation in a fluidization regime map. in Proceedings of the 21st international conference on fluidized bed combustion (FBC), Naples, Italy. 2012.
57. Shaul, S., E. Rabinovich, and H. Kalman, Generalized flow regime diagram of fluidized beds based on the height to bed diameter ratio. Powder technology, 2012. 228: p. 264-271.
58. Lupiáñez, C., L.I. Díez, and L.M. Romeo, Influence of gas-staging on pollutant emissions from fluidized bed oxy-firing. Chemical Engineering Journal, 2014. 256: p. 380-389.
59. Okasha, F., Staged combustion of rice straw in a fluidized bed. Experimental Thermal and Fluid Science, 2007. 32(1): p. 52-59.
60. Ozyuguran, A., A. Akturk, and S. Yaman, Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel, 2018. 214: p. 640-646.
61. Peng, C.-T., A Study of Oxy-fuel Co-Combustion of Plam Empty Fruit Bunch with Australian coal. 2018.
62. Ramos, A., et al., Co-gasification and recent developments on waste-to-energy conversion: A review. Renewable and Sustainable Energy Reviews, 2018. 81: p. 380-398.
63. Chen, Z., et al., Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource technology, 2015. 192: p. 441-450.
64. Troitzsch, J. and E. Antonatus, Plastics flammability handbook: principles, regulations, testing, and approval. 2021: Carl Hanser Verlag GmbH Co KG.
65. Burra, K. and A. Gupta, Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes. Applied Energy, 2018. 220: p. 408-418.
66. Munir, S., et al., Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresource technology, 2009. 100(3): p. 1413-1418.
67. Toporov, D., Combustion of pulverised coal in a mixture of oxygen and recycled flue gas. 2014: Elsevier.
68. Ruiz-Montoya, M., et al., Kinetic synergistic effect in co-pyrolysis of Eucalyptus globulus with high and low density polyethylene. Energy Reports, 2022. 8: p. 10688-10704.
69. Aboulkas, A. and A. El Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Conversion and Management, 2010. 51(7): p. 1363-1369.
70. Wang, Q., et al., Influence of BaCO3 on chlorine fixation, combustion characteristics and KCl conversion during biomass combustion. Fuel, 2017. 208: p. 82-90.
71. Li, J., B. Li, and X. Zhang, Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polymer degradation and stability, 2002. 78(2): p. 279-285.
72. Zhaosheng, Y., M. Xiaoqian, and L. Ao, Kinetic studies on catalytic combustion of rice and wheat straw under air-and oxygen-enriched atmospheres, by using thermogravimetric analysis. Biomass and bioenergy, 2008. 32(11): p. 1046-1055.
73. Rathnam, R.K., et al., Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel processing technology, 2009. 90(6): p. 797-802.
74. Moško, J., et al., Fluidized bed incineration of sewage sludge in O2/N2 and O2/CO2 atmospheres. Energy & fuels, 2018. 32(2): p. 2355-2365.
75. Sher, F., et al., Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor. Fuel, 2018. 215: p. 778-786.
76. Czakiert, T., et al., Fuel conversion from oxy-fuel combustion in a circulating fluidized bed. Fuel Processing Technology, 2006. 87(6): p. 531-538.
校內:2027-08-17公開