簡易檢索 / 詳目顯示

研究生: 艾美
Amrita Vats
論文名稱: 探討登革病毒感染人類臍帶血中表現CD133及CD34標誌物之造血幹細胞
Dengue Virus Infection in CD133 and CD34 markers of Hematopoietic Stem Cells in Human Umbilical Cord Blood
指導教授: 彭貴春
Perng, Guey-Chuen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 145
中文關鍵詞: 登革病毒人類臍帶血CD133+造血幹細胞母子垂直傳播持續感染細胞共培養CD34+
外文關鍵詞: Dengue virus, human Umbilical Cord Blood, CD133+, Hematopoietic Stem Cells, Vertical transmission, Persistent infection, cell Co-culture, CD34+
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據之前的研究顯示,人類臍帶血 (HUCB) 及孕婦胎盤會有病毒感染的現象。此外,研究也顯示,登革病毒(DENV)可以有效感染骨髓組織中的造血幹細胞(HSC),並且顯示造血幹細胞或許具有作為病毒潛伏性感染儲存庫的能力。利用細胞表面標誌分子 CD133 及 CD34 作為造血幹細胞的標的,可以發現在人類臍帶血中有大量造血幹細胞存在,而在登革病毒感染的個案中我們可以發現有母子垂直感染的特性,因此,在我的研究中,我們試著探討登革病毒是否可以感染人類臍帶血中的造血幹細胞並改變其特性。結果顯示人類臍帶血細胞確實可以被登革病毒感染,其中帶有CD133 及 CD34細胞表面標誌的造血幹細胞可以作為病毒長期潛伏感染的儲存庫,並且在利用非洲綠猴腎臟細胞 (Vero cell) 共培養後可以重新活化潛伏於造血幹細胞中的登革病毒。
    方法:在我的研究中,我們與成大醫院婦產科合作取得新鮮的人類臍帶血檢體後,首先以登革病毒感染臍帶血細胞,再以多色流式細胞儀分析被感染的細胞族群。免疫螢光染色(IFA)被用以證實病毒確實感染造血幹細胞。t-隨機鄰近嵌入法(t-SNE) 則用來分析在登革病毒感染後,非結構蛋白-1 (NS1) 與細胞族群分布及探討登革病毒潛伏於造血幹細胞中的關聯性。
    主要發現:人類臍帶血細胞非常易受登革病毒的感染,而在登革病毒感染後可以增加造血幹細胞族群,並且影響造血幹細胞中具分化下游細胞功能相關的GATA轉錄因子1, 2, 3的表達量並改變其平衡。免疫螢光染色(IFA) 則顯示登革病毒感染後,確實發現病毒非結構蛋白-1表現在帶有CD133 及 CD34細胞表面標誌的造血幹細胞。t-隨機鄰近嵌入法(t-SNE) 分析則顯示 CD133+NS1+ 及 CD34+NS1+ 細胞的異質性分布。此外,在長時間感染CD133+ 和 CD34+ 造血幹細胞後,即使上清液中病毒量降低,但卻可以在細胞內發現登革病毒顆粒的存在。
    意義:了解造血幹細胞受登革病毒感染的機制可以更進一步知道在懷孕期間感染對於胎兒及母親造成的影響。透過我的研究可以為登革病毒感染提供新觀點以利了解登革病毒如何透過感染造血幹細胞並造成母子垂直感染現象,並且證明登革病毒具有潛伏性及持續性感染的特性,另外也更加了解病毒在細胞的傳播及如何躲避免疫系統。期望以此研究能發展出預防新生兒早產及登革出血熱之相關策略。

    Incidence of viral infection has been reported in human umbilical cord blood cells (HUCB) as well as the placenta of pregnant women. Recent studies have shown that Dengue virus (DENV) can efficiently infect bone marrow hematopoietic stem cells (HSC).CD133 and CD34 are known to be markers of HSCs, which are present in abundance in HUCB. Several lines of evidence have suggested (HSCs) being a long-lived reservoir of the virus as a latent infection. In this study, we attempted to explore whether DENV can infect HUCB, as the placenta has been evidenced to be associated with mother- to-infant vertical transmission. Here, we proposed that human UCB cells were permissive to the DENV infection and DENV infected CD133+ and CD34+ HSCs are reservoir of the virus that could be reactivated upon re-culturing in Vero cells.
    Methods: In this study, human UCB cells were freshly obtained and subjected to DENV infection. Multicolor flow cytometry (MFCM) was used to demonstrate the phenotypes of the infected HSC populations. Immunofluorescence analysis (IFA) and T-distributed Stochastic Neighbor Embedding (t-SNE) were used to show the association of the DENV antigen, non-structural protein1 (NS1), with HSCs and Vero co-culture platform to recover the virus.
    Key findings: UCB cells were highly permissive to DENV infection. DENV altered the phenotype of the infected HSC population, increased the expression of HSCs, and affected the balance of transcription factors (TFs, GATA1/2/3). IFA revealed the association of the DENV antigen, non-structural protein1 (NS1), with CD34 and CD133 cells. T-distributed Stochastic Neighbor Embedding (t-SNE) analysis revealed heterogeneity in the distribution of CD133+NS1+, and CD34+ NS1+ cells. DENV particles were recovered from CD133+ and CD34+ cells even when virus production in the supernatant was negligible even after prolonged infection.
    Significance: The evidence of DENV infection in primitive hematopoietic stem cells will give a better understanding of immunological changes in the fetus and response to infection in the mother. The new emerging insight of DENV infections and mode of transmission from mother to newborn via stem cells residing in the UCB will corroborate this research on the mechanism of viral latency and persistent infection, the cell-cell transmission of DENV and DENV immune escape, which is crucial in strategies to develop prevention of pre-term birth and dengue hemorrhagic fever in infants.

    Contents 中文摘要 i-ii Abstract iii-v Acknowledgement vi Contents vii-xii List of Tables xiii List of Figures xiv-xv Abbreviations xvi Introduction 1-21 1. Dengue Virus Transmission 1-4 2. Dengue Virus 5-7 3.Human Umbilical Cord Blood as an Ex-vivo Model 8 4. Classification of Hematopoietic Stem Cells and new Paradigm of HSCs 9-12 5. Different Facets of CD133 and CD34 in Cultured Cells 13 6. Persistent and Latent Infection of Dengue Virus 13 7. Foundation of the study 16 Specific aims 22-25 Aim 1: To investigate the permissiveness of HUCB and stem cells to DENV and to identify the phenotypic changes of stem cells in DNEV infected cord blood cells. 23 Aim 2: Investigation of transcription factors GATA-1, GATA-2, and GATA-3 in DENV-infected HUCBs. 23 Aim 3: Role of CD44 in proliferation and regulation of CD133 and CD34 DENV infected cells. 24 Aim 4: To account for persistent infection of DENV in CD133 and CD34 cell types of HUCBs. 24-25 Aim 5: To recover the DENV particle from infected stem cells using co-culture platform with Vero cells. 25 Material and Methods 26-38 A. Material 26-27 1. Ethical statement and collection of Human Umbilical Cord blood 26 2. Detection kit 26 3. Cell lines 26 4.Virus 26 5. List of other materials 27 B. Methods 28 1. Preparation of the HUCB for DENV infection 28 2. Detection of anti-DENV IgG and IgM in human umbilical cord blood serum 28 3. Plaque Assay 28-29 4. Immunophenotyping and multicolor flow cytometry (MFCM) 29 5. Analysis of flow cytometry data 29-30 6. Immunofluorescence staining and confocal image capturing. 31 7. Colony Forming Assay 31-32 8. Mapping of CD133, CD34, and NS1 using t-distributed stochastic neighbor embedding. 33 9. Flow cytometry of CD44 in DENV infected HUCB. 34 10. Analysis of proliferation of CD133, CD34 cells of DENV infected HUCB by the expression of Ki67 and CFSE. 34 11. DENV prolonged Infection 36 12. Magnetic Bead Sorting of CD133+ and D34+ cells and Co-culture with Vero cells 37 13. Cells and Viruses for co-culture 37 14. Western Blot Analysis 37-38 15. BrdU Proliferation Assay 38 Results 39-55 1. Detection of anti-DENV IgG and IgM in human umbilical cord blood serum. 39 2. Human HUCBs were infectable by DENV, resulting in an increase of HSC population and a decrease in progenitor cells. 39-40 3. Phenotypic expression of transcription factors GATA-1, GATA-2, and GATA-3 in DENV-infected HUCBs using MCFC. (The experiment was conducted by Yi-Ju Chen) 40-41 4. DENV infection upregulated the expression of CD34+ and CD133+ HSCs. 41-42 5. Coordinated changes of CD133+/- CD34+/-NS1+ cells in DENV-infected cord blood cells. 42-43 6. Proliferation index of CD133, CD34 in DENV infected HUCB to show the maintenance of stem cells using Ki67 and CFSE. 43-44 7. Characterization of NS1 with CD133+ and CD34+ cells in DENV-infected HUCBs using immunofluorescence assay. 44 8. Temporal heterogeneity of CD133, CD34, and NS1 using t-SNE. 44-45 9. Investigating CD44 cell surface marker in HUCBCs, CD133+ and CD34+ cells. 45-46 10. Effect of long-term in vitro expansion on HUCB cells 46-48 10.1 Confirmation of the infectivity of virus in specific sorted CD133+ and CD34+ cells accounting for the persistent infection and difference between NS1 association with CD133 and CD34 from early and after prolonged infection using confocal imaging. 48-50 10.2 Production of infectious virus from of DENV infected stem cells of HUCB after co-incubation with Vero cells mediated by cell-cell interaction. 50-51 10.3 Detection of DENV protein in co-cultured cells indicates infected cells transmitted the DENV particle. 51-52 10.4 Characterization to show the influence of CD133 and CD34 in co-cultured cells and Vero cells. 52 10.5 DENV infection do not impair the surface expression of CD34 and CD133 without loss of NS1. 53 10.6 DENV infection perturbed the cell proliferation of CD133 and CD34 after prolonged infection and contribute on to viral load. 54-54 Discussion 56-69 Relative immunocompetence of IgG and IgM in cord blood serum 57-58 Impact on hematopoietic stem cells in DENV infected cord blood cells. 58-58 DENV infection upregulated the CD133+/CD34+ cells and time, space and temporal changes in NS1 was observed on CD133+ or CD34+ cells using Tsne (t-Distributed Stochastic Neighbor Embedding). 59-59 The pattern of GATA TFs indicates that CD44 expression regulate at transcriptional level contributing to early infection of CD133 and CD34 DENV infected HUCBCs. 60-60 CD44 a nexus in maintenance and proliferation of DENV infected CD133 and CD34 in cord blood cells. 62 GATA-3 has a predilection towards HSC and EMP after DENV Infection suggesting enhanced susceptibility and vital role in infection and may contributing to atypical lymphocytes (ATL). 62-64 Persistent infection of DENV with fluctuating virus production after prolonged infection in HUCB. 64-64 Replication competence of DENV in CD133 and CD34 cells in HUCB. 65-65 CD133+/-, CD34 +/- with NS1+/- are permissive subsets to maintain long term infection in HUCB and modulate the proliferation of CD133 and CD34 cells in HUCB. 67 Summary 70-70 Conclusion 72 References 73 Figures 104 Supplementary section 129 Appendix 138 Publications 145

    References
    1. Woolhouse, M.E. and Brierly,L, McCaffery and Lycett S., Assessing the Epidemic Potential of RNA and DNA Viruses. Emerg Infect Dis, 2016. 22(12): p. 2037-2044.
    2. Woolhouse, M.E.J, and Brierley,L. Epidemiological characteristics of human-infective RNA viruses. Sci Data, 2018. 5(1): p. 180017.
    3. Malavige, G.N., Fernando,S.,Fernando,D.J.,Seneviratne. Dengue viral infections. Postgraduate Medical Journal, 2004. 80(948): p. 588-601.
    4. Hasan,S., Jamdar ,S.F.,Alalowi,M.,Al Beajii.Al.Ageel,S.M. Dengue virus: A global human threat: Review of literature. J Int Soc Prev Community Dent, 2016. 6(1): p. 1-6.
    5. Dhanoa,A.,Hasan,S.S.,Ngim,C.F., Lau,C.F.,Chan, T.S., et.al., Impact of dengue virus (DENV) co-infection on clinical manifestations, disease severity and laboratory parameters. BMC Infectious Diseases, 2016. 16(1): p. 406.
    6. Halstead, S., Recent advances in understanding dengue. F1000Res, 2019. 8.
    7. World Health Organization. Dengue and Severe Dengue, Global strategy for Dengue Prevention and Control, W.H.O, Editor. 2020.
    8. Ebi, K.L and Nealon, J., Dengue in a changing climate. Environ Res, 2016. 151: p. 115-123.
    9. Wesolowski, A., Qureshi, T., Boni M.F., Sundsoy, P.R., Johanssan,M.A., et. al., Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc Natl Acad Sci U S A, 2015. 112(38): p. 11887-92.
    10. Tjaden, N.B., Thomas, S.M., Fischer, D., Beierkuhnlein. Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence. PLoS Negl Trop Dis, 2013. 7(6): p. e2207.
    11. Duong, V., Lambrechts.L, Paul, R.R., Ly Sw., Lay, R.S., et al., Asymptomatic humans transmit dengue virus to mosquitoes. Proctl Natl Acad Sci USA, 2015: p. 201508114.
    12. Chen, L.H. and Wilson, M.E. Update on non-vector transmission of dengue: relevant studies with Zika and other flaviviruses. Trop Dis Travel Med Vaccines, 2016. 2: p. 15.
    13. Beltrami, E.M., Williams,I.T., Shapiro,C.N., Chamberland , M.E. Risk and management of blood-borne infections in health care workers. Clin Microbiol Rev, 2000. 13(3): p. 385-407.
    14. Mourya, D.T.,Basu,G.A.,Barde,P.V.,Sapkal,G.N.,Padbidri,V.S., Gore,M.M. Horizontal and vertical transmission of dengue virus type 2 in highly and lowly susceptible strains of Aedes aegypti mosquitoes. Acta Virol, 2001. 45(2): p. 67-71.
    15. Ferreira-de-Lima, V.H. and Lima-Camara, T.N., Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review. Parasites & Vectors, 2018. 11(1): p. 77.
    16. Murillo, D., Murillo, A, and Lee, S. The Role of Vertical Transmission in the Control of Dengue Fever. Int J Environ Res public health, 2019. 16(5): p. 803.
    17. Paixão, E.S., Teixeira ,M.G., N Costaet,M.D.C., Rodrigues,L.C. Dengue during pregnancy and adverse fetal outcomes: a systematic review and meta-analysis. Lancet Infect Dis, 2016. 16(7): p. 857-865.
    18. Basurko, C., Matheus,S., Hilderal ,H., Everhard ,S., Restrepo, M., et. al., Estimating the Risk of Vertical Transmission of Dengue: A Prospective Study. Am J Trop Med Hyg, 2018. 98(6): p. 1826-1832.
    19. Chye, J.K., Lim, C.T.,Ng,K.B., Lim,J.M.H., George,R., Lam,S.K. Vertical transmission of dengue. Clin Infect Dis, 1997. 25(6): p. 1374-7.
    20. Basurko, C., Everhard ,S.,Matheus ,S., Restrepo,M., Hilderal,H., et. al., A prospective matched study on symptomatic dengue in pregnancy. PLoS One, 2018. 13(10): p. e0202005.
    21. Williams, C.-M,Raga, E.,Baak-Baak, C.M., Kiem,S.,Blitvich, B.J, and Ramos C. Maternal, Fetal, and Neonatal Outcomes in Pregnant Dengue Patients in Mexico. BioMed research international, 2018. 2018: p. 9643083-9643083.
    22. Keelapang, P.,Sriburi,R., Supasa,S., Panyadee,N., et al., Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J Virol, 2004. 78(5): p. 2367-81.
    23. Barth,O.M. Replication of dengue viruses in mosquito cell cultures--a model from ultrastructural observations. Mem Inst Oswaldo Cruz, 1992. 87(4): p. 565-74.
    24. Barth, O.M., Cortes,L.M., Lampe,E., Filho,J.C.F..Ultrastructural aspects of virus replication in one fatal case and several other isolates from a dengue type 2 outbreak in Rio de Janeiro. Mem Inst Oswaldo Cruz, 1994. 89(1): p. 21-4.
    25. Zhang, Y., Corver,J., Chipman,P.R., Zhang,W., Pletnev,S,V., et. al., Structures of immature flavivirus particles. The EMBO journal, 2003. 22(11): p. 2604-2613.
    26. Kuhn, R.J., Zhang,W., Rossmann,M.G., Pletnev,S,V., Corver, J.,et.al., Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002. 108(5): p. 717-25.
    27. Ma, L., Jones, C.T., Groesch ,T.D., Kuhn,R.J., Post,C.B. Solution structure of dengue virus capsid protein reveals another fold. Proc Nat Acad Sci USA, 2004. 101(10): p. 3414-3419.
    28. Nasar, S., Rashid,N, and. Iftikhar S.Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J Med Virol, 2020. 92(8): p. 941-955.
    29. Leitmeyer, K.C., Vaughn,D.W., Watts,D.M.,Slas, R.et. al., Dengue virus structural differences that correlate with pathogenesis. J Virol, 1999. 73(6): p. 4738-4747.
    30. Bäck, A.T,and Lundkvist, A. Dengue viruses - an overview. Infection ecology & epidemiology, 2013. 3: p. 10.3402/iee.v3i0.19839.
    31. Wardhani, P., Aryati,A., Yohan,B., Trimarsanto,H., Setiyaningsih,Tri,Y.et.al., Clinical and virological characteristics of dengue in Surabaya, Indonesia. PloS one, 2017. 12(6): p. e0178443-e0178443.
    32. Rey, F.A., Stiasny ,K., Vaney,M-S, Dellarole,M., Heinz F.X.The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep, 2018. 19(2): p. 206-224.
    33. Bennett, S.N., Drummond,A.J., Kapan,D.D, Suchard ,M.A., et al., Epidemic dynamics revealed in dengue evolution. Mol Biol Evol, 2010. 27(4): p. 811-8.
    34. Holmes, E.C, and Twiddy, S.S. The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol, 2003. 3(1): p. 19-28.
    35. Weaver,S.C, and Vasilakis,N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol, 2009. 9(4): p. 523-40.
    36. Kostyuchenko, V.A., Zhang,Q., L.Tan,J.,Seng-Ng,T., Lok,S.M. Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J Virol, 2013. 87(13): p. 7700-7.
    37. Bargeron Clark, K., Hsiao,H-M., Noisakran,S., Tsai Jih-Jin,Perng,G-C. Role of microparticles in dengue virus infection and its impact on medical intervention strategies. Yale J Biol Med, 2012. 85(1): p. 3-18.
    38. Zhang, X., Sheng, Ju., Plevka,P., Kuhn,R.J., Diamond,M.S., Rossmann,M.G. Dengue structure differs at the temperatures of its human and mosquito hosts. Proc Natl Acad Sci U S A, 2013. 110(17): p. 6795-9.
    39. Begum, F., Das,S., Mukherjee,D., Mal,S., Ray .U.Insight into the Tropism of Dengue Virus in Humans. Viruses, 2019. 11(12).
    40. Carr, J.M., Ashander,L.M., Calvert,J.K., Ma,Yufeng.,Aloia,A.,et. al., Molecular Responses of Human Retinal Cells to Infection with Dengue Virus. Mediators Inflamm, 2017. 2017: p. 3164375.
    41. Diamond, M., Edgil,D., Roberts,T.G., Lu,B.,Harris,E.Infection of Human Cells by Dengue Virus Is Modulated by Different Cell Types and Viral Strains. J Virol, 2000. 74: p. 7814-23.
    42. Hsu, A.Y., Wu,S.R., Tsai,Jih-Jin., Chen,Po-Lin.,Chen,Ya-P., et. al., Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance. Sci Rep, 2015. 5: p. 17990.
    43. Noisakran, S., Onlamoon,N., Hsiao,H-M., Clark,K.B., Villinger,F., Ansari,A.A., Perng,G-C. Infection of bone marrow cells by dengue virus in vivo. Exp Hematol, 2012. 40(3): p. 250-259.e4.
    44. Prindull, G., Prindull, B and Meulen, N. Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr Scand, 1978. 67(4): p. 413-6.
    45. Kita, K., Lee,J.O.,Finnerty,C.C., and Herndon,D.N. Cord blood-derived hematopoietic stem/progenitor cells: current challenges in engraftment, infection, and ex vivo expansion. Stem Cells Int, 2011. 2011: p. 276193.
    46. Harris, D.T., Schumacher,M.J., Locascio,J., Besencon,F.J., Olson,G.B., DeLuca,D., Shenker,L., Bard,J,Boyse,E.A. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proct of the Natl Acad Sciences USA, 1992. 89(21): p. 10006-10010.
    47. Rosler, E.S. Brandt, J.E., Chute,J.,Hoffman,R. An in vivo competitive repopulation assay for various sources of human hematopoietic stem cells. Blood, 2000. 96(10): p. 3414-3421.
    48. Hordyjewska, A., Popiołek, Ł. and Horecka, A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology, 2015. 67(3): p. 387-96.
    49. Sahraneshin Samani, F., Ebrahimi,M., Zandieh,T., Khoshchehreh,R, et. al., In Vitro Differentiation of Human Umbilical Cord Blood CD133(+)Cells into Insulin Producing Cells in Co-Culture with Rat Pancreatic Mesenchymal Stem Cells. Cell J, 2015. 17(2): p. 211-220.
    50. Cheng,H.,Zheng,Z.and,Cheng,T.New paradigms on hematopoietic stem cell differentiation. Protein Cell, 2020. 11(1): p. 34-44.
    51. Huang, H, and Cantor, A.B. Common features of megakaryocytes and hematopoietic stem cells: what's the connection? J Cell Biochem, 2009. 107(5): p. 857-64.
    52. Cunin, P, and Nigrovic, P.A. Megakaryocytes as immune cells. J Leukoc Biol, 2019. 105(6): p. 1111-1121.
    53. Boilard, E. and Flamand, L.The role of the megakaryocyte in immunity has gone viral. Blood, 2019. 133(19): p. 2001-2002.
    54. Notta, F., Zandi, S., Takayama,N., Dobson, S., Gan,I.O., Wilson,G., et al., Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science, 2016. 351(6269): p. aab2116.
    55. Gekas, C., Lievre ,F-D., Orkin, S.H., Mikkola,H.KA. The placenta is a niche for hematopoietic stem cells. Dev Cell, 2005. 8(3): p. 365-75.
    56. Li, H., Pei, H., Wang,S., Zhang, B., Fan, Z., Liu, Y., et .al., Arterial endothelium creates a permissive niche for expansion of human cord blood hematopoietic stem and progenitor cells. Stem Cell Research & Therapy, 2020. 11(1): p. 358.
    57. Aggarwal,R.,Lu,J.,Pompili.,V.J.,Das,H.Hematopoieticstem cells: transcriptional regulation, ex vivo expansion and clinical application. Curr Mol Med, 2012. 12(1): p. 34-49.
    58. Ferreira,R.,Ohneda,K.,Yamamoto,M.,Philipsen,S.GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol, 2005. 25(4): p. 1215-27.
    59. Pimkin, M., Kossenkov,A.V., Mishra,T., Morissey,C.S., Wu,W.M et al., Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res, 2014. 24(12): p. 1932-44.
    60. Ku, C.-J., Hosoya,T., Maillard,I., and Engel, J.M. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry. Blood, 2012. 119(10): p. 2242-2251.
    61. Tindemans, I., Serafini,N., Di Santo,J.P,Hendriks,R.W. GATA-3 function in innate and adaptive immunity. Immunity, 2014. 41(2): p. 191-206.
    62. Barroso,K.S.N.,Kaufman,J.,Brunetta,D.M.,Araujo,deCarvalho,F.M.de.,Daurte,F-B.Dengue encephalitis in allogenic hematopoietic stem cell transplantation recipient. Bone Marrow Transplant, 2017. 52(10): p. 1455-1456.
    63. Vogt, M.B., Lahon,A., Arya,R.P., Jennifer,L., Clinton, S, Hess,S-S .Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLOS Negl Trop Dis, 2019. 13(11): p. e0007837.
    64. Hsu, A.Y.,Ho,Tzu-Chuan ,Lai,M-L,Tan,S-S,et al., Identification and characterization of permissive cells to dengue virus infection in human hematopoietic stem and progenitor cells. Transfusion, 2019. 59(9): p. 2938-2951.
    65. Young, N.S., Flaviviruses and Bone Marrow Failure. JAMA, 1990. 263(22): p. 3065-3068.
    66. Punzel, M., Korukluoglu,G., Caglaiyk,D.Y., Menemenlioglu,D., Civriz, S., et al., Dengue virus transmission by blood stem cell donor after travel to Sri Lanka; Germany, 2013. Emerg Infect Dis, 2014. 20(8): p. 1366-9.
    67. de Souza Pereira, B.B., Junior ,L.G.D., demello Costa,T.C., Felix,A.C., Simoes, B.P., et. al., Prolonged viremia in dengue virus infection in hematopoietic stem cell transplant recipients and patients with hematological malignancies. Trans Infect Dis, 2017. 19(4): p. e12721.
    68. Tsai,J.-J.,Liu,L.T.,Chang,K.,Wang,S.H.,Hsiao,H-M.,Clark,K.B.,Perng,G-C.The importance of hematopoietic progenitor cells in dengue. Ther Adv Hematol, 2012. 3(1): p. 59-71.
    69. Zaikos, T.D. and Collins, K.L. Long-lived reservoirs of HIV-1. Trends Microbiol, 2014. 22(4): p. 173-175.
    70. Karbanová, J., Kolka,E.M., Fonseca,A.V., Lorra,C., Janich,P., et. al., The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem : official journal of the Histochemistry Society, 2008. 56(11): p. 977-993.
    71. Giebel, B., Corbeil,D., Beckman,J., Hohn,J., Freund,D., et .al., Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood, 2004. 104(8): p. 2332-8.
    72. Delia, D., Lampugnani,M.G., Resnati,M., Dejana E., Aiello,A., et. al., CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood, 1993. 81(4): p. 1001-8.
    73. Mutnal, M.B., Cheeran,M. C-J., Hu,S., Lokensgrd,J.R. Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain. PLoS One, 2011. 6(1): p. e16211.
    74. Wheatland,R.,Viral carrier status is instilled by viral regulatory particles.Med Hypotheses, 2010. 74(4): p. 688-91.
    75. Beasley, A.R., W. Lichter, and M.M. Sigel. Studies on latent infections of tissue cultures with dengue virus. Archiv für die gesamte Virusforschung, 1961. 10(5): p. 672-683.
    76. Kurane, I.,Kontny,U.,Janus,J., Ennis,F.A. Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Arch Virol, 1990. 110(1): p. 91-101.
    77. Oldstone, M.B.A., Viral persistence: Parameters, mechanisms and future predictions. Virology, 2006. 344(1): p. 111-118.
    78. Kolb-Mäurer, A. and Goebel, W. Susceptibility of hematopoietic stem cells to pathogens: role in virus/bacteria tropism and pathogenesis. FEMS Microbiol Lett, 2003. 226(2): p. 203-207.
    79. Holmes,K.V., Behnke,J.N. Evolution of a Coronavirus during Persistent Infection inVitro. Adv Exp Med and Biol, Vol. 142. 1981: Springer,Biochemistry and Biology of Coronaviruses.
    80. Arbour, N., Cote,G., Lachance,C., Tardieu, M., Cashman,N.R., Talbot,P.J. Acute and persistent infection of human neural cell lines by human coronavirus OC43. J Virol, 1999. 73(4): p. 3338-50.
    81. Doi, T., Kwon,H-J., Honda,T., Sato,H., Yoneda,M., Kai.C. Measles virus induces persistent infection by autoregulation of viral replication. Scientific Reports, 2016. 6(1): p. 37163.
    82. Chau, T.N.B., Hieu,N.T., Anders, K.L., Wolbers, M., Lien,Le.B. Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants. J Infect Dis. 2009. 200(12): p. 1893-1900.
    83. Chougnet, C.A., Human fetal immune cells fight back. Sci Transl Med, 2018. 10(438).
    84. Guzman, M.G, and Vazquez, S. The Complexity of Antibody-Dependent Enhancement of Dengue Virus Infection. Viruses, 2010. 2(12): p. 2649-2662.
    85. Kliks,S.C.,Nimmanitya,S.,Nisalak,A.,Burke,D.S. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg, 1988. 38(2): p. 411-9.
    86. Castanha, P.M.S.,Braga,C., Cordeiro,M.T.,Souza,A.I. et. al., Placental Transfer of Dengue Virus (DENV)-Specific Antibodies and Kinetics of DENV Infection-Enhancing Activity in Brazilian Infants. J Infect Dis, 2016. 214(2): p. 265-272.
    87. Mathiesen, L., Nielsen,L.K., Anderson,J.T., Sandlie,I., et. al., Maternofetal transplacental transport of recombinant IgG antibodies lacking effector functions. Blood, 2013. 122(7): p. 1174-81.
    88. Adams, B, and M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics, 2010. 2(1): p. 1-10.
    89. Campion, A. Le., Larouche,A., Daniel,S-F and Soudeyns,H. Pathogenesis of Hepatitis C During Pregnancy and Childhood. Viruses, 2012. 4(12): p. 3531-3550.
    90. Marchette, N.J., Halstead,S.B., Rourke,T.O', Scott,R.M., Bancroft,W.H., Vanopruks,V. Effect of immune status on dengue 2 virus replication in cultured leukocytes from infants and children. Infect Immun, 1979. 24(1): p. 47-50.
    91. Sinhabahu, V.P., Sathananthan, R, and Malavige, G.N. Perinatal transmission of dengue: a case report. BMC Res Notes, 2014. 7: p. 795-795.
    92. Nunes, P.C., Paes,M.V., deOliveira,C.A.B,deFillipis,A.M.B et al., Detection of dengue NS1 and NS3 proteins in placenta and umbilical cord in fetal and maternal death. J Med Virol, 2016. 88(8): p. 1448-52.
    93. Yin, X., Zhong, X, and Pan, S. Vertical Transmission of Dengue Infection: The first putative case reported in china. Rev Inst Med Trop Sao Paulo, 2016. 58: p. 90.
    94. Hall, J.M., Lingenfelter,P., Adams, S.L., Lasse,D., Hansen,J.A.Bean,M.A. Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization. Blood, 1995. 86(7): p. 2829-32.
    95. Boussemart, T.,Babe,P., Sibille,G., Neyret, C., Berhel,C. Prenatal transmission of dengue: two new cases. J Perinatol, 2001. 21(4): p. 255-7.
    96. Gupta, A.K., Kuamri,S.,Singhal,A.,Bahl,A.et al., Neonatal thrombocytopenia and platelets transfusion. Asian J Transfus Sci, 2012. 6(2): p. 161-4.
    97. Chotigeat, U., Kalayanarooj, S, and Nisalak, A. Vertical transmission of dengue infection in Thai infants: two case reports. J Med Assoc Thai, 2003. 86 Suppl 3: p. S628-32.
    98. Guo,T.,Wang,X.,Qu,Y.,Yin,Y.,Jing,T.,Zhang,Q. Megakaryopoiesis and platelet production: insight into hematopoietic stem cell proliferation and differentiation. Stem Cell Investig, 2015. 2: p. 3.
    99. Lu, P.L., Hsiao,H-H.,Tsai,J-J,Chen,T-C, et. al., Dengue virus-associated hemophagocytic syndrome and dyserythropoiesis: a case report. Kaohsiung J Med Sci, 2005. 21(1): p. 34-9.
    100. Delavigne, K., Berard,E., Bertoliet,S.,Corre,J., et.al., Hemophagocytic syndrome in acute myeloid leukemia patients undergoing intensive chemotherapy. Haematologica, 2013. 99.
    101. Chien, Y.W.,Wang,C-C,Wang,Yu-P., Lee,C.Y., Perng,G.C.Risk of Leukemia after Dengue Virus Infection: A Population-Based Cohort Study. Cancer Epidemiol Biomarkers Prev, 2020. 29(3): p. 558-564.
    102. Gawoski, J.M. and Ooi, W.W. Dengue fever mimicking plasma cell leukemia. Arch Pathol Lab Med, 2003. 127(8): p. 1026-7.
    103. Bierman, H.R. and Nelson, E.R. Hematodepressive Virus Diseases of Thailand. Ann Intern Med, 1965. 62: p. 867-84.
    104. Lentjes,M.H.,Niessen,H.E.C.,Akiyama,Y., et al., The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med, 2016. 18: p. e3.
    105. Martina, B.E., Koraka, P, and Osterhaus, A.D.Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev, 2009. 22(4): p. 564-81.
    106. P.E.,Nantapanich,S.,Nisalak,A.,Udomsakdi,S.,Dewey,R.W.,Russel,P.K .Recurrence of epidemic dengue hemorrhagic fever in an insular setting. Am J Trop Med Hyg, 1969. 18(4): p. 573-9.
    107. Visuthranukul, J., Bunworasate,U.,Lawasut,P., Suankratay. Dengue hemorrhagic fever in a peripheral blood stem cell transplant recipient: the first case report. Infect Dis Rep, 2009. 1(1): p. e3.
    108. Montoro,J.,Pinana,J.L.,Moscardo,F.,Sanz,J.Infectious Complications after Umbilical Cord-Blood Transplantation from Unrelated Donors. Mediterr J of Hematol Infectious Dis, 2016. 8(1): p. e2016051-e2016051.
    110. Acosta, E.G.,Castilla,V,and Damonte, E.B. Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol, 2009. 11(10): p. 1533-49.
    111. Sattentau, Q., Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol, 2008. 6(11): p. 815-26.
    112. Cheng,C-C.,Fang,C.C.,Ping-lo,Y.,Chiang,Yi.H.,et. al.,Cell-to-Cell Spread of Dengue Viral RNA in Mosquito Cells. BioMed Research International, 2020. 2020: p. 2452409.
    113. Lin, C.C., Yang,C.F., Tu, Hsun.C ,Huang,G.C., Shih,Y-T., Chuang,C.K., Chen,W.J.A novel tetraspanin C189 upregulated in C6/36 mosquito cells following dengue 2 virus infection. Virus Res, 2007. 124(1-2): p. 176-83.
    114. Mothes, W., Sherer,N M., Jin, J., Zhong,P.Virus Cell-to-Cell Transmission. J Virol, 2010. 84(17): p. 8360-8368.
    115. Menezo,Y.J.,Guerin,J.F,and,Czyba,J.C. Improvement of human early embryo development in vitro by coculture on monolayers of Vero cells. Biol Reprod, 1990. 42(2): p. 301-6.
    116. Silasi, M., Cardenas ,I., Kwon,J.Y., Racicot ,K., Also,P., Mor,G. Viral infections during pregnancy. Am J Reprod Immunol, 2015. 73(3): p. 199-213.
    117. Alallah, J., Mohtisham,F., Saidi,N., Almehdar,A., Anees,A., Sallout,A.,Congenital dengue in a Saudi neonate: A case report. J Neonatal-Perinatal Med, 2020. 13: p. 279-282.
    118. AlbanoM.S.,Ciubotariu, R., Dobrila,L., Tanawski,M., DeLeon, M., et.al., Cytomegalovirus viral load in cord blood and impact of congenital infection on markers of hematopoietic progenitor cell potency. Transfusion, 2017. 57(11): p. 2768-2774.
    119. Kado,C.I., Asymptomatic and Latent Infections, in Plant Bacteriology.Chapter 9:APS Publications.p. 221-228.
    120. Rafique,I.,Nadeem,Saqib,M.A.,Munir,M.A.,Qureshi,H.,et.al., Asymptomatic dengue infection
    in adults of major cities of Pakistan. Asian Pac J of Trop Med, 2017. 10(10): p. 1002-1006.
    121. Kuhlman, A.S., Transmission of maternal memory. 2017, Science spotlight.: Clinical Research Division. .
    122. Griffin, D.O., Holodick, N.E.and, Rothstein, T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. The J Expe Med, 2011. 208(1): p. 67-80.
    123. Luckey,C.J.,Bhattacharya,D.,Goldrath,A.W.,Weissman,I.L.,Benoist,C.,Mathis,D. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A, 2006. 103(9): p. 3304-9.
    124. Ponta, H., Sherman, L and, Herrlich, P.A. CD44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol, 2003. 4(1): p. 33-45.
    125. Lee-Sayer,S.S.M.,Dougan,M.N.,Cooper,J.,Sanderson,L.,et.al.,CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment. PLoS One, 2018. 13(4): p. e0196011.
    126. Bournazos, S., Gupta, A and, Ravetch, J.V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol, 2020. 20(10): p. 633-643.
    127. Nakao, S., Lai, C.J.and, N.S. Young, Dengue virus, a flavivirus, propagates in human bone marrow progenitors and hematopoietic cell lines. Blood, 1989. 74(4): p. 1235-40.
    128. Palacios,G.,Jabado,O.,Renwick,N.,Briese,T.,Lipkin,W.I.Severe acute respiratory syndrome coronavirus persistence in Vero cells. Chin Med J (Engl), 2005. 118(6): p. 451-9.
    129. Burrell, C.J., Howard, C.R and, Murphy, F.A. Pathogenesis of Virus Infections. Fenner and White's Medical Virology, 2017: p. 77-104.
    130. Sarma, N.J., Takeda, A. and, Yaseen, N.R. Colony forming cell (CFC) assay for human hematopoietic cells. J Vis Exp, 2010(46).
    131. Burns,T., Fine-Tune vi-SNE to get the most of your single cell data analysis. 2017, Dr Garry Nolan’s lab.Stanford University. http://www.cytobank.org/index.html.
    132. Saadatpour,A.,Guo,G.,Orkin,S.H.,Yuan,G-C.Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol, 2014. 5.
    133. Nunes, R.D. and, Zandavalli, F.M Association between maternal and fetal factors and quality of cord blood as a source of stem cells. Rev Bras Hematol Hemoter, 2015. 37(1): p. 38-42.
    134. Yamada, T., Okamoto,Y., Kasamatsu ,H., Horie,Y., Yamashita,N., Matsumoto,K., Factors affecting the volume of umbilical cord blood collections. Acta Obstet Gynecol Scand, 2000. 79(10): p. 830-3.
    135. Mazzoccoli,G.,Miscio,G.,Fontana,G.,Copetti,M.,Francavilla,M.,et.al., Time related variations in stem cell harvesting of umbilical cord blood. Sci Rep, 2016. 6(1): p. 21404.
    136. Nakagawa,R.,Watanabe,T.,Kawano,Y.,Kanai,S.,et.al.,Analysis of maternal and neonatal factors that influence the nucleated and CD34+ cell yield for cord blood banking. Transfusion, 2004. 44(2): p. 262-7.
    137. Horst,E.,Meijer,C.J.,Radaskiewicz,T.,Dongan,J.J.V,Pieters,R.,et.al.,Expression of a human homing receptor (CD44) in lymphoid malignancies and related stages of lymphoid development. Leukemia, 1990. 4(5): p. 383-9.
    138. Manchester,M.,Smith,K.A.,Eto,D.S.,Perkin,H.B.,Torbett,B.E. Targeting and Hematopoietic Suppression of Human CD34+ Cells by Measles Virus. J Virol, 2002. 76(13): p. 6636-6642.
    139. Pascutti,M.F.,Erkelens,M.N.and Nolte, M.A. Impact of Viral Infections on Hematopoiesis: From Beneficial to Detrimental Effects on Bone Marrow Output. Front Immunol, 2016. 7: p. 364.
    140. Noroozi-Aghideh, A and, Kheirandish, M. Human cord blood-derived viral pathogens as the potential threats to the hematopoietic stem cell transplantation safety: A mini review. World J of Stem Cells, 2019. 11(2): p. 73-83.
    141. Dupont, L. and, Reeves, M.B. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol, 2016. 26(2): p. 75-89.
    142. D'Arena,G.,Musto,P.,Cascavilla,N.,DGiogio,G.,Fusilli,S., Carotenuto,M. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica, 1998. 83(3): p. 197-203.
    143. Mahyuddin,A.P., Kanneganti,A.,Wong,J.J.L., Dimri,P.S., et al., Mechanisms and evidence of vertical transmission of infections in pregnancy including SARS-CoV-2s. Prenat Diagn, 2020. 40(13): p. 1655-1670.
    144. Souza, A.I., Ferreira,A.L.C.G., Arres,M.A., Moura,B.M., Braga,M.C. Dengue as a cause of fever during pregnancy: a report of two cases. Rev Soc Bras Med Trop, 2016. 49(3): p. 380-2.
    145. Castanha, P.M., Braga,C., Cordeiro,M.T., Souza,A.I.,et al., Placental Transfer of Dengue Virus (DENV)-Specific Antibodies and Kinetics of DENV Infection-Enhancing Activity in Brazilian Infants. J Infect Dis, 2016. 214(2): p. 265-72.
    146. Halstead, S.B.,Lan,N.T.,Myint., T.T.,Shwe,T.N., Nisalak,A., et al., Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg Infect Dis, 2002. 8(12): p. 1474-1479.
    147. Roopenian, D.C. and Akilesh, S.FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol, 2007. 7(9): p. 715-25.
    148. Akilesh, S., Gregory,J., Derry,C., Shaw,A.S. Neonatal FcR Expression in Bone Marrow-Derived Cells Functions to Protect Serum IgG from Catabolism. The Journal of Immunology, 2007. 179(7): p. 4580-4588.
    149. Argolo, A.F.,Feres,V.C.R., Silveira,L.A.,Oliveira,A.C.M.,et al., Prevalence and incidence of dengue virus and antibody placental transfer during late pregnancy in central Brazil. BMC Infect Dis, 2013. 13: p. 254.
    150. Martins, V.E.P., Alencar,C.H., Kamimura,M.T., et al., Occurrence of Natural Vertical Transmission of Dengue-2 and Dengue-3 Viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS One, 2012. 7(7): p. e41386.
    151. Fenizia, C.,Baisin,M.,Cetin,I.,Vergani,P., Mileto,D., Spinillo,A., et al., Analysis of SARS-CoV-2 vertical transmission during pregnancy.Nat Commun, 2020. 11(1): p. 5128.
    152. Chien, Y.-W., Huang,H.M., Ho,T-C., Tseng,F-C., Ko,N.Y et al., Seroepidemiology of dengue virus infection among adults during the ending phase of a severe dengue epidemic in southern Taiwan, 2015. BMC infectious diseases, 2019. 19(1): p. 338-338.
    153. Wedgwood, J.F.,Weinberger,B.I.,Hatam.L.,Palmer,R.Umbilical Cord Blood Lacks Circulating B Lymphocytes Expressing Surface IgG or IgA. Clinical Immunology and Immunopathology, 1997. 84(3): p. 276-282.
    154. Ekanayake, C.D., Padumadasa,S., Premaratna,R., Rajendrajith,S., Samaranayake,S.R.M Transplacental transfer of dengue. Ceylon Med J, 2014. 59(4): p. 145-6.
    155. Simmons, C.P.,Chau,T.N.B.,Thuy,T.T.,Tuan,N.M.,et al.,Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J Infect Dis, 2007. 196(3): p. 416-24.
    156. Sridharan,A.,Chen,Q,.Tang,K.F.,Ooi,E.E.,Hibberd,M.L.,Chen,J.Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J Virol, 2013. 87(21): p. 11648-58.
    157. Tang, T.H., Alonso,S., Ng,Fong-Poh.L., Thein,T-L., et al., Increased Serum Hyaluronic Acid and Heparan Sulfate in Dengue Fever: Association with Plasma Leakage and Disease Severity. Sci Rep, 2017. 7: p. 46191.
    158. Lin,C.-Y.,Kolliopoulos,C.,Huang,C-H.,Tenhunen,J.,et.al., High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMedicine, 2019. 48: p. 425-441.
    159. Azeredo,E.L.,Zagne,S.M.O.,Alvarenga,A.R.,Nogueira,RMR.,Kubelka,F.,Deoliveira-Pinto,L.M.Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease. Mem Inst Oswaldo Cruz, 2006. 101(4): p. 437-49.
    160. Azeredo,E.L.,Deoliveira-Pinto,L.M.,Zagne,S.M.,Cerqueira,D.I.S.,Nogueira,RM.R.,
    Kubelka,C.F. NK cells, displaying early activation, cytotoxicity and adhesion molecules
    are associated with mild dengue disease. Clin Experimental Immunol, 2006. 143(2):p. 345-356.
    161. Neu, S., Geiselhart,A., Sproll,M., Hahn,D., Kuci,S., Niethammer,D., Handgretinger,R. Expression of CD44 isoforms by highly enriched CD34-positive cells in cord blood, bone marrow and leukaphereses. Bone Marrow Transplant, 1997. 20(7): p. 593-8.
    162. Ku, C.J., Hosoya,T., Maillard,I., Engel,J.D.GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry. Blood, 2012. 119(10): p. 2242-51.
    163. Chen, R.F., Liu,J-W., Yeh,W-T., Wang,Lin., Chieh,J-C.,et al., Altered T helper 1 reaction but not increase of virus load in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol, 2005. 44(1): p. 43-50.
    164. Scripture-Adams,D.D.,Dample,.S.S.,Li-long., Elihu,K.J., Qin,S., Arias,A.M.,et.al., GATA-3 dose-dependent checkpoints in early T cell commitment. J Immunol, 2014. 193(7): p. 3470-91.
    165. Jampangern,W.,Vongthoung,K.,Jittmittraphap,A.,Woraongpaiboon,S.,et.al., Characterization of atypical lymphocytes and immunophenotypes of lymphocytes in patients with dengue virus infection. Asian Pac J Allergy Immunol, 2007. 25(1): p. 27-36.
    166. Wells, R.A., Scott,R.M., Pavanand,K.,Sathitsthein,V.,Cheamudon,U., Macdermottaet,R.P Kinetics of peripheral blood leukocyte alterations in Thai children with dengue hemorrhagic fever. Infect Immun, 1980. 28(2): p. 428-33.
    167. Anagha A. Joshi, G.B.R., Swathi Kulkarni. Correlation of thrombocytopenia with degree of atypical lymphocytosis as a prognostic indicator in dengue. Int J Res Med Sci, 2017. 5(9): p. 4041-4046.
    168. Thomas Albrecht, M.F., Istvan Boldogh, and, Rabson, Alan. S. Effects on Cells, in Medical Microbiology, B. S, Editor. 1996, University of Texas Medical Branch at Galveston: Galveston.
    169. Speck, S.H and, Ganem,D.Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell host & microbe, 2010. 8(1): p. 100-115.
    170. Phoolcharoen, W. and Smith,D.R. Internalization of the dengue virus is cell cycle modulated in HepG2, but not Vero cells. J Med Virol, 2004. 74(3): p. 434-41.
    171. Kaliwantoro,N.,Soesatyo,M.H.N.E.,Indarto.,Juffrie,M.,Dharmastiti,R.,Effect of dengue virus infection on the permeability of vero cells line. AIP Conference Proceedings, 2016. 1755(1): p. 030003.
    172. Cherrier,M.V.,Kaufmann,B.,Nybakken,G.E.,Lok,S-M.,et.al.,Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. Embo J, 2009. 28(20): p. 3269-76.
    173. Byk, L.A. and, Gamarnik, A.V.Properties and Functions of the Dengue Virus Capsid Protein. Annu Rev Virol, 2016. 3(1): p. 263-281.
    174. Samsa, M.M., Mondotte,J.A., Iglesias,N.G.Miranda,I.A.,et.al.,Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog, 2009. 5(10): p. e1000632.
    175. Kobayashi, H., Suda, T. and, Takubo, K.How hematopoietic stem/progenitors and their niche sense and respond to infectious stress. Exp Hematol, 2016. 44(2): p. 92-100.
    176. Matatall, K.A., Jeong,M., Chen,S.,Sun,D.,et al., Chronic Infection Depletes Hematopoietic Stem Cells through Stress-Induced Terminal Differentiation. Cell Rep, 2016. 17(10): p. 2584-2595.
    177. McNamara, L.A. and, Collins, K.L. Hematopoietic stem/precursor cells as HIV reservoirs. Curr Opin HIV AIDS, 2011. 6(1): p. 43-8.
    178. Abedi,E.,Kheirandish,M.,Sharifi,Z., Samiee,S., Kokhaei,P., et. al., Quantification of Active and Latent Form of Human Cytomegalovirus Infection in Umbilical Cord Blood Donors by Real-Time PCR. Int J Organ Transplant Med, 2017. 8(3): p. 140-145.
    179. Luppi, M., Barrozi,P.,Morris,C.,Maiorana,A.,Garber,R.,et al.,Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J Virol, 1999. 73(1): p. 754-9.
    180. Handgretinger, R. and Kuçi, S.CD133-Positive Hematopoietic Stem Cells: From Biology to Medicine. Adv Exp Med Biol, 2013. 777: p. 99-111.
    181. Karbanová, J.,Kolka,E.M., Fonseca,A-V., Lorra,C., Janich,P., et al., The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem, 2008. 56(11): p. 977-93.
    182. Wen, Z., Song, H. and Ming, G.L. How does Zika virus cause microcephaly? Genes Dev, 2017. 31(9): p. 849-861.
    183. Corrales-Aguilar, E. and, Hun-Opfer, L. New perspectives on Dengue Pthogenesis. Acta Médica Costarricense, 2012. 54: p. 75-85.

    下載圖示 校內:2023-07-23公開
    校外:2023-07-23公開
    QR CODE