簡易檢索 / 詳目顯示

研究生: 游文月
Yu, Wen-Yueh
論文名稱: 共溶劑促進陰陽離子液胞自發性形成之研究
Cosolvent Effects on the Spontaneous Formation of Vesicles from 1:1 Cationic and Anionic Surfactant Mixtures
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 113
中文關鍵詞: 陽離子型界面活性劑陰離子型界面活性劑等莫耳混合自發性形成共溶劑效應陰陽離子液胞
外文關鍵詞: equimolar mixture, anionic surfactant, cationic surfactant, spontaneous formation, catanionic vesicles, cosolvent effect
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究的主要目的在於探討利用共溶劑的添加以促進陰陽離子液胞的自發性形成。本文中使用了九種直碳鏈的陰/陽離子型界面活性劑混合系統:CnSO4NaCmN(CH3)3Br; n = 12, 14; m = 8, 10, 12, 14; 及 C12SO4NaC16N(CH3)3Br。陰/陽離子型界面活性劑的莫耳比例皆為1:1,陰/陽離子型界面活性劑系統總濃度固定為10 mM。搭配了四種共溶劑:甲醇、乙醇、正丙醇及正丁醇。液胞的自發性形成主要是根據粒徑的分布及肉眼觀察的綜合判斷,並以TEM的顯微觀測作為輔助。
      實驗結果顯示,添加共溶劑對液胞形成的效應,隨著陰/陽離子型界面活性劑系統、疏水性尾基的總碳數、共溶劑的種類及添加量的不同,會有多樣的變化。經由本文分析其影響效應可以歸納成四種轉變型態:type 1為系統在純水中直接形成液胞溶液,添加共溶劑後液胞則逐漸溶解成單分子。type 2為系統在純水中形成沈澱物,一添加共溶劑,沈澱物則會立即轉變成液胞結構,隨著共溶劑濃度的增加,液胞則逐漸溶解成單分子。type 3與type 2類似,差別在於共溶劑需添加到一極限濃度才能使沈澱物轉變成液胞。type 4為系統在純水中形成沈澱物,添加共溶劑沈澱物則逐漸溶解成單分子。其中type 2及type 3可以有效地促使原本在純水中只形成沈澱物的陰/陽離子型界面活性劑系統轉變生成液胞,這對穩定液胞的獲得及其相關應用極有貢獻。本文並提出疏水效應理論機制,藉由混合溶劑的介電性質的改變,合理解釋實驗的結果。

      This work aims to provide a practical vesicle-boosting method by means of cosolvent addition in water and propose a theoretical explanation which can delineate the general trend of cosolvent effects and elucidate the possible role of cosolvent in the formation of catanionic vesicles. Effects of four homologous cosolvents (methanol, ethanol, 1-propanol, and 1-butanol) on the spontaneous formation of vesicles from eight 1:1 anionic-cationic mixed surfactant systems sodium alkyl sulfatesalkyltrimethylammonium bromides (CnSO4NaCmN(CH3)3Br; n = 12, 14; m = 8, 10, 12, 14) at a total surfactant concentration of 10 mM were systematically studied. The experimental results revealed that varied changes in vesicle formability of different mixed surfactant systems may be resulted from various kinds and amounts of cosolvent. Four types of cosolvent effects, however, can be classified. Among them, cosolvent effects type 2 and type 3 would serve the purpose and were exemplified by C12SO4NaC10N(CH3)3Br, C14SO4NaC10N(CH3)3Br, and C12SO4NaC12N(CH3)3Br mixed surfactants. Furthermore, the effectiveness of vesicle boosting increases in the order 1-butanol > 1-propanol > ethanol > methanol. An explanation of cosolvent effects based on the medium dielectric constant was then proposed.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 序論 1 1-1 前言 1 1-2 研究動機與目的 5 1-3文獻回顧 6 1-3-1 影響陰/陽離子型界面活性劑混合系統在水中的形成結構之因素 6 1-3-2 共溶劑在脂質雙層(lipid bilayer)與微脂粒(liposome﹞方面的影響 7 1-3-3 共溶劑在陰陽離子液胞方面的影響 8 第二章 實驗 28 2-1 藥品 28 2-1-1 陰離子型界面活性劑 28 2-1-2 陽離子型界面活性劑 28 2-1-3 醇類共溶劑 28 2-1-4 純水 29 2-1-5 製作穿透式電子顯微鏡試片所用之染色劑 29 2-2 實驗儀器 29 2-2-1 雷射光散設法粒徑測定儀 29 2-2-2 雷射光散射法界面電位測定儀 30 2-2-3 穿透式電子顯微鏡(Transmission Electron Microscopy) 31 2-3 實驗步驟 32 2-3-1 混合陰/陽離子型界面活性劑系統的製備 32 2-3-2 混合溶液的粒徑分佈測量 33 2-3-3 穿透式電子顯微鏡試片的製作 34 2-3-4 混合溶液的界面電位分佈測量 34 第三章 實驗結果與討論 43 3-1 實驗結果中界面活性劑的聚集結構的判定基準 43 3-1-1 純水的粒徑分佈 43 3-1-2 依過濾前後粒徑測定結果和溶液的狀態來判定界面活性劑的聚集結構 43 3-2 陰/陽離子型界面活性劑系統在純水中所形成的溶液狀態 44 3-3 添加共溶劑導致溶液所發生的轉變型態 45 3-4 可能影響陰陽離子液胞形成的因素 47 3-4-1 系統部份可能影響陰陽離子液胞形成的因素 48 3-4-2 共溶劑部份可能影響陰陽離子液胞形成的因素 49 3-5 共溶劑影響溶液極性的機制推測 50 3-6 本研究結果與文獻研究結果之討論 51 3-6-1 研究結果差異之討論 51 3-6-2 共溶劑影響界面活性劑聚集結構的機制之討論 54 3-7 等莫耳混合陰/陽離子型界面活性劑系統的表面電位測定 55 第四章 結論 100 第五章 接續研究方向之建議 103 參考文獻 104 附錄 110 自述 113

    Adachi, T., Takahashi, H., Ohki, K. and Hatta, I., Interdigitated structure of phospholipids-alcohol systems studied by x-ray diffraction, Biophys. J., 68, 1850, 1995.

    Barry, J. A. and Gawrisch, K., Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers, Biochemistry, 33, 8082, 1994.

    Bergström, M., Pedersen, J. S., Schurtenberger, P. and Egelhaaf, S. U., Small-angle neutron scattering (SDNS) study of vesicles and lamellar sheets formed from mixtures of an anionic and a cationic surfactant, J. Phys. Chem. B, 103, 9888, 1999.

    Chien, C. L., Yeh S. J., Yang Y. M., Chang, C. H., and Maa, J. R., Formation and encapsulation of catanionic vesicles, J. Chin. Colloid & Interface Soc., 24, 31, 2002.

    Chin, J. H. and Goldstein, D. B., Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes, Mol. Pharmacol, 13, 435, 1997.

    Chung, Y. C., Lee, H. E. and Park, J. Y., Bilayer properties of the multiple-chain ion pair amphiphiles, Bull. Korean Chem. Soc., 19, 1249, 1998.

    Dayan, N. and Touitou, E., Carriers for skin delivery of trihexyphenidyl HCl: ethosome vs. liposomes, Biomaterials, 21, 1879, 2000.

    Fischer, A., Hebrant, M. and Tondre, C., Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system, J. Colloid Interface Sci., 248, 163, 2002.

    Fukuda, H., Kawata, K. and Okuda, H., Bilayer-forming ion-pair amphiphiles from single-chain surfactants, J. Am. Chem. Soc., 112, 1635, 1990.

    Gradzielske, M., Kinetics of morphological changes in surfactant systems, Current Opinion in Colloid & Interface Science, 8, 337, 2003.

    Herrington, K. L., Kaler, E. W., Miller, D. D., Zasadzinski, J. A. and Chiruvolu, S., Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS), J. Phys. Chem., 97, 13792, 1993.

    Hirano, K. and Fukuda, H., Polymerizable ion-paired amphiphiles, Langmuir 1991, 7, 1045.

    Huang, J. B. and Zhao, G. X., Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant, Colloid Polym. Sci., 273, 156, 1995.

    Huang, J. B., Zhu, B. Y., Zhao, G. X. and Zhang, Z. Y., Vesicle formation of a 1:1 cationic surfactant mixture in ethanol solution, Langmuir, 13, 5759, 1997.

    Huang, J. B., Zhu, B. Y., Mao, M., He, P., Wang, J. and He, X., Vesicle formation of 1:1cationic and anionic surfactant mixtures in nonaqueous polar solvents, Colloid Polym. Sci., 277, 354, 1999.

    Israelachvili, J. N., Intermolecular and surface forces 2nd Ed., Academic, New York, chap. 17, 1992.

    Kaler, E. W., Murthy, A. K., Rodriguez, B. and Zasadzinski, J. A., Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, Science, 245, 1371, 1989.

    Karp, G., Cell and Molecular Biology, 3th Ed., Wiley, New York, 2002.

    Karukstis, K. K., McCormack, S.A., McQueen, T. M. and Goto, K. F., Fluorescence delineation of the surfactant microstructures in the CTAB-SOS-H2O catanionic system, Langmuir, 20, 64, 2004.

    Komatsu, H. and Okada, S., Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes, Biochim. Biophys. Acta, 1235, 270, 1995.

    Komatsu, H. and Okada, S., Ethanol-enhanced permeation of phosphatidylcholine/phosphatidylethanolamine mixed liposomal membranes due to ethanol-induced lateral phase separation, Biochim. Biophys. Acta, 1283, 73, 1996.

    Mao, M., Huang, J. B., Zhu, B. Y., Yin, H. Q., and Fu, H. L., The structural transition of catanionic vesicles induced by toluene, Langmuir, 18, 3380, 2002.

    Marques, E. F., Regev, O., Khan, A. and Lindman, B., Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects, Adv. Colloid Interface Sci., 100-102, 83, 2003.

    Meagher, R. J., Hatton, T. A. and Bose, A., Enthalpy measurements in aqueous SDS/DTAB solutions using isothermal titration microcalorimetry, Langmuir, 14, 4081, 1998.

    Nelson, D. L. and Cox, M. M., Lehninger principles of biochemistry, 3rd Ed., Worth, New York, p23, pp140-152, 2000.

    New, R. R. C., Liposomes: a practical approach, R. R. C. New, Ed., Oxford University Press, New York, 1990.

    Pang, K.-Y. Y., Braswell, L. M., Chang, L., Sommer, T. and Miller, K. W., The perturbation of lipid bilayers by general anesthetics: a quantitative test of the disordered lipid hypothesis, Mol. Pharmacol, 18, 84, 1980

    Patist, A., Chhabra, V., Pagidipati, R., Shah, R. and Shah, D. O., Effect of chain length compatibility on micellar stability in sodium sulfate/alkyltrimethylammonium bromide solutions, Langmuir, 13, 432, 1997.

    Perry, J. H., Chemical Engineerings’ Handbook, 6th ed., McGraw-Hill, N. Y., pp3-25~44, 1984.

    Regev, O. and Khan, A., Alkyl chain symmetry effects in mixed cationic-anionic surfactant systems, J. Colloid Interface Sci., 182, 95, 1996.

    Reid, R. C., Prausnitz, J. M., and Poling, B. E., The properties of gases and liquids, 4th ed., McGraw-Hill, New York, pp656-718, 1988.

    Robinson, B. H. and Rogerson, M., Handbook of applied surface and colloid chemistry, K. Holmberg, Ed., Wiley, New York, pp45-48, 2001.

    Sakai, H., Matsumura, A., Yokoyama, S., Saji, T. and Abe, M., Photochemical switching of vesicle formation using an azobenzene-modified surfactant, J. Phys. Chem. B, 103, 10737, 1999.

    Salkar, R. A., Mukesh, D., Samant, S. D. and Nabigar, C., Mechanism of micelle to vesicle transition in cationic-anionic surfactant mixtures, Langmuir, 14, 3778, 1998.

    Shi, M.W., Law, S. L. and Tsay, D., A study on the size and stability of lung surfactant liposomes prepared by sonication method, J. Chin. Colloid & Interface Soc., 18, 4, 259, 1995.

    Shukla, R. and Cheryan, M., Performance of ultrafiltration membranes in ethanol-water solutions: effect of membrane conditioning, J. Membr. Sci., 198, 75, 2002.

    Sjöbom, M. B. and Edlund, H., Dependence of alkyl chain asymmetry on phase equilibria of three catanionic surfactant mixtures containing dodecyltrimethylammonium chloride-sodium alkylcarboxylate-water, Langmuir, 18, 8309, 2002.

    Söderman, O., Herrington, K. L., Kaler, E. W. and Miller, D. D., Transition from micelles to vesicles in aqueous mixtures of anionic and cationic surfactants, Langmuir, 13, 5531, 1997.

    Stokes, R. J. and Evans, D. F., Fundamentals of interfacial engineering, Wiley-VCH, Inc., New York, p230, 1997.

    Tomašić, V., Štefannić, I. and Filipović-Vinceković, Adsorption, association and precipitation in hexadecyltrimethylammonium bromide/sodium dodecyl sulfate mixtures, Colloid Polym. Sci., 277, 153, 1999.

    Tondre, C. and Caillet, C., Properties of the amphiphilic films in mixted cationic/anionic vesicles: a comprehensive view from a literature analysis, Adv. Colloid Interface Sci., 93, 115, 2001.

    Touitou, E., Dayan, N., Bergelson, L., Godin, B. and Eliaz, M., Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties, J. Controlled Release, 65, 403, 2000.

    Wang, C. Z., Tang, S. H., Huang, J. B., Zhang, X. R. and Fu, H. L., Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems, Colloid Polym. Sci., 280, 770, 2002.

    Yatcilla, M. T., Herrington, K. L., Brasher, L. L. and Kaler, E. W., Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS), J. Phys. Chem., 100, 5874, 1996.

    Yin, H. Q., Mao, M., Huang, J. B. and Fu, H. L., Two-phase region in the DTAB/SL mixed surfactant system, Langmuir, 18, 9198, 2002.

    Yuet, P. K. and Blankschtein, D., Molecular-thermodynamic modeling of mixed cationic/anionic vesicles, Langmuir, 12, 3802, 1996.

    Zana, R. and Michels, B., On the formation of vesicles by mixtures of anionic and cationic surfactants in ethanol, Langmuir, 14, 6599, 1998.

    Zhang, X. R., Huang, J. B., Mao, M., Tang, S. H. and Zhu, B. Y., From precipitation to vesicles: a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents, Colloid Polym. Sci., 279, 1245, 2001.

    林冠豪,帶電的陰陽離子液胞之製備及物理穩定性研究,國立成功大學,化工系碩士論文,台灣、台南,2004。

    曹簡禹、黃定加,物理化學實驗學,國立編譯館,pp113-147,1987。

    葉紹任,共溶劑對陰陽離子液胞穩定性的影響,國立成功大學,化工系碩士論文,台灣、台南,2003。

    鍾依玲,陰/陽離子液胞自發性形成之探討,國立成功大學,化工系碩士論文,台灣﹑台南,2002。

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE