簡易檢索 / 詳目顯示

研究生: 張雅雯
Chang, Ya-wen
論文名稱: 太陽能電池之材料及製程知識庫系統
A Knowledge-Based System for Materials and Processes in Solar Cell Fabrication
指導教授: 黃文星
Hwang, Weng-sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 144
中文關鍵詞: 太陽能電池知識庫
外文關鍵詞: knowledge-based, solar cell
相關次數: 點閱:124下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能發電產業發展蓬勃,知識日新月異,為了達到更有效率的學習,一個架構清晰的知識庫有其必要性。本研究以知識管理為出發點,針對太陽能電池的原理、材料及其製程,建構一太陽能電池知識庫。並以網頁形式呈現此知識庫。
    本研究所建立之知識庫具備分類清晰的架構;首先依太陽能電池的材料區分為矽太陽能電池、化合物半導體太陽能電池、染料敏化太陽能電池、有機高分子太陽能電池。其中矽太陽能電池又分成矽基太陽能電池及矽薄膜太陽能電池兩種。化合物半導體太陽能電池又分成二六族碲化鎘太陽能電池、銅銦鎵二硒系列太陽能電池及三五族砷化鎵太陽能電池等三種。每個不同的分類項目下方依太陽能電池中的結構、材料類別、以及製程等要點分述,最終彙整建構成一個太陽能電池知識庫,並將之以網頁形式呈現。
    本研究所建立之知識庫網站具有知識管理之價值,不僅能幫助太陽光電領域初學者瞭解各種太陽能電池中的結構、材料及製程,亦提供太陽光電領域進階人員一個實用的知識庫系統。而與其他的學習管道比較,本知識庫網站不僅便於增修、更新與擴充,更具備全文檢索功能,為一因應e世代潮流的知識取得管道。

    There are constantly new technologies and information generated in the field of photovoltaic. In order to extract knowledge effectively, we need a knowledge-based system with a clear structure. In this thesis research, a knowledge-based system for materials and processes in solar cell fabrication has been established from the standpoint of knowledge management and demonstrated in the form of web-sites.
    A clear structure is employed in this knowledge-based system. In the first level, all films were classified into four categories based on their electrical properties: silicon solar cell, compound semiconductor solar cell, dye sensitized solar cell and organic/polymer solar cell. In the second level, silicon solar cell was classified into two classes based on their structures: silicon based solar cell and thin film silicon solar cell. Compound semiconductor was further classified into three classes based on their materials: Cadmium telluride solar cell, CuInGaSe2 solar cell and GaAs solar cell. Each class at the second level was further divided in accordance with the positions, materials, processes, etc. Arranging all the information, the knowledge-based system was established.
    The solar cell knowledge-based system has the value of knowledge management. It can not only help the beginners but also more experienced engineers in the field of solar photovoltaic. Compare with other ways of knowledge acquisition, this knowledge-based system is easier to be modified and updated. It also has a Site-search function to enhance its value.

    目錄 中文摘要 I ABSTRACT II 致謝 III 目錄 V 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與架構 2 1.3 研究流程 3 第二章 文獻回顧 7 2.1 無機太陽能電池元件運作原理 7 2.1.1 基本太陽能電池的運作原理 7 2.1.2 決定太陽能電池的效能的因素 8 2.2 太陽能電池實際設計考量 11 第三章 知識庫系統的架構 17 3.1 矽太陽能電池 17 3.1.1 矽基太陽能電池 17 3.1.1.1 基板 18 3.1.1.1.1 太陽能級多晶矽原料製造技術 19 3.1.1.1.2 太陽能級矽單晶片製造技術 22 3.1.1.1.3 多晶矽晶片製造技術 25 3.1.1.1.1.1鑄造多晶矽錠 26 3.1.1.1.1.2薄板多晶矽片製造技術 27 3.1.1.2 表面粗糙化結構 30 3.1.1.3 p-n二極體 31 3.1.1.3.1 磷擴散製程 32 3.1.1.3.2 邊緣絕緣處理 33 3.1.1.4 抗反射層 34 3.1.1.5 電極 36 3.1.2 薄膜矽太陽能電池 38 3.1.2.1 薄膜結晶矽太陽能電池 39 3.1.2.1.1 光線留滯結構 40 3.1.2.1.2 p-n薄膜 43 3.1.2.1.2.1薄膜沉積技術 43 3.1.2.1.2.2薄膜晶粒改善技術 46 3.1.2.2 薄膜非晶矽太陽能電池 50 3.1.2.2.1 TCO 53 3.1.2.2.2 p-i-n薄膜 53 3.1.2.2.2.1非晶矽的原子結構與特性 54 3.1.2.2.2.2 PECVD(Plasma Enhanced CVD) 55 3.1.2.2.2.3 HWCVD(Hot Wire CVD) 57 3.1.2.2.2.4 合金膜的形成 57 3.2 化合物半導體太陽能電池 58 3.2.1 三五族太陽能電池 58 3.2.1.1 Ge電池 60 3.2.1.2 GaAs電池 60 3.2.1.3 GaInP電池 61 3.2.1.4隧道結(Tunnel Junction) 62 3.2.2 二六族碲化鎘太陽能電池 63 3.2.2.1 p-n薄膜 64 3.2.2.1.1 物理氣相沉積法 65 3.2.2.1.2 密閉空間昇華法 66 3.2.2.1.3 氣相傳輸沉積法 67 3.2.2.1.4 電化學沉積法 67 3.2.2.1.5 噴塗沉積法 67 3.2.2.1.6 有機金屬化學氣相沉積法 68 3.2.2.1.7 網印沉積法 68 3.2.2.2 背面電極 68 3.2.3 銅銦鎵二硒系列太陽能電池 69 3.2.3.1 電極 70 3.2.3.2 p-type薄膜 71 3.2.3.2.1 CuInGaSe2及CuInSe2 71 3.2.3.2.2 二階段共同蒸鍍 72 3.2.3.2.3 三階段共同蒸鍍 73 3.2.3.2.4 硒化法 74 3.2.3.3 n-type薄膜 75 3.2.3.3.1 化學槽水域法 76 3.3 染料敏化太陽能電池 76 3.3.1 染料敏化太陽能電池的發電原理 78 3.3.2 多孔洞TiO2光導電極 79 3.3.3 染料光敏化劑 82 3.3.4 電解質 85 3.3.5 輔助電極 87 3.4 有機/高分子太陽能電池 88 3.4.1 有機/高分子太陽能電池的工作原理 89 3.4.2 有機/高分子太陽能電池的演進 91 3.4.2.1 單層結構 91 3.4.2.2 電子予體/受體雙層異質接面結構 92 3.4.2.3 電子予體摻混受體單層異質接面結構 92 3.4.2.4 高分子摻混無機半導體奈米材料之單層異質接面結構 94 3.4.3 常用於製作有機/高分子太陽能電池的材料 96 第四章 知識庫系統操作介面的設計 116 4.1 網頁設計的軟體工具 116 4.2 美工與影像處理 118 第五章 使用範例 124 5.1 利用主選單 124 5.2 利用全文檢索功能 124 第六章 總結 132 第七章 未來工作 134 參考文獻 135

    參考文獻
    1. 經濟部能源委員會, “太陽電池”, 替代能源技術專輯, 1990.
    2. Sze S.M., “Semiconductor Devices physics and technology”, Wiley. New York, 1985.
    3. Luque A., “Physical Limitation to Photovoltaic Energy Conversion”, IOP Press, Philadelphia, 1990.
    4. 黃建昇, “結晶矽太陽電池發展現況”, 工業材料雜誌, Vol.203, pp. 50-155, 2003.
    5. Endroes A., “Mono- and tri-crystalline Si for PV application”, Proc. E-MRS2001 Spring Meeting, Symposium E on Crystalline Silicon Solar Cells, Solar Energy Materials amd Solar Cells, Vol.72, pp. 109-124, 2002.
    6. Jester T., “Crystalline silicon manufacturing progress”, Progress Photovolt: Research Application, Vol. 10, pp. 99-106, 2002.
    7. Ferrazza F., “Large size multicrystalline silicon ingots.” Proceedings E-MRS 2001 Spring Meeting, Symposium E on Crystalline Solicon Solar Cells, Solar Energy Materials and Solar Cells, Vol.72, pp. 77-81, 2002.
    8. Durand F., “Electromagnetic continuous pulling process compared to current casting processes with respect to solidification characteristics”, Proceedings Of the E-MRS 2001 Spring Meeting, Symposium E on Crystalline Silicon Solar Cells, Solar Energy Materials and Solar Cells, Vol. 72, pp. 125-132, 2002.
    9. Kaleis J., “Silicon ribbons and foils – state of the art”, Proceedings Of the E-MRS 2001 Spring Meeting, Symposium E on Crystalline Silicon Solar Cells, Solar Energy Materials and Solar Cells, Vol. 72, pp. 139-153, 2002.
    10. Meyer D.L., Jessup J. A., Hacke P., Granata S. J., Ishikawa N. and Emoto M., “Production of thin (70-100 μm) crystalline silicon cells for conformable modules”, Proceedings 29th IEEE photovoltaic Specialists Conference, New Orleans, pp. 110, 2002.
    11. Hanoka J., “PVMat contribution towards Evergreen Solar’s new factory”, Proceedings 29th IEEE photovoltaic Specialists Conference, New Orleans, pp. 66, 2002.
    12. Schonecker A., Laas L., Gutjahr A. and Wyers P., “Ribbon growth-on-substrate: progress in high speed crystalline silicon wafer manufacturing”, Proceedings 29th IEEE photovoltaic Specialists Conference, New Orleans, pp. 316, 2002.
    13. King D.L. and Buck M.E., “Experimental Optimization of an Anisotropic Etchin Process foe Random Texturization of Silicon Solar Cells”, Proceedings 22nd IEEE Photovoltaic Specialists Conference, pp. 303-308, 1991.
    14. King R.R., Sinton R.A. and Swanson R.M., “Studies of Diffused Phosphorus Emitters: Saturation Current, Surface Recombination Velocity, and Quantum Efficiency”, IEEE Transactions On Electron. Devices, Vol. ED-37, pp. 365-371, 1990.
    15. 林明獻, “太陽電池技術入門”, 全華圖書股份有限公司, 2008.
    16. Goetzberger A., “Optical Confinement in Thin Si-Solar Cells by Diffuse Back Reflectors”, Proceedings 15th IEEE Photovoltaic Specialists Conference, Orlando, pp. 867-870, 1981.
    17. Wronski C.R. and Carlson D., “Amorphous Silicon Solar Cells. In: Photoconversion of Solar Energy”, Vol. 3: Clean Electricity from Photovoltaics. Imperial College Press, 2001.
    18. King R.R., Fetzer C.M., Colter P.C., Edmondson K.M., Ermer J.H., Cotal, H.L., Yoon, H., Stavrides, A.P., Kinsey, G., Krut, D.D. and Karam N.H., “High-efficiency space and terrertrial multijunction solar cells through bandgap control in cell structures”, Proceedings 29th IEEE Photovoltaic Specialists Conference, New Orleans, pp. 776-781, 2002.
    19. Contreras M.A., Ramanathan K., AbuShama J.A.M., Hasoon F., Young D.L., Egaas B. and Noufi R., “Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells”, Progress Photovolt., Vol. 13, pp. 209-216, 2005.
    20. Shafarman W.N. and Phillips J.E., Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington DC, pp. 917-919, 1996.
    21. Karg F.H., “Development and manufacturing of CIS thin film solar module”, Solar Energy Materials and Solar Cells, Vol. 66, pp. 645, 2001.
    22. Mickelsen R.A. and Chen W.S., “Development of a 9.4% efficient thin-film CuInSe2-CdS solar cell”, Proceedings of the 15th IEEE Photovoltaic Specialists Conference, 800-804, 1981.
    23. Gabor A.M., Tuttle J.R., Albin D.S., Contreras M.A., Noufi R. and Hermann A.M.., “High Efficiency CuInxGa1-xSe2 Solar Cells Made From (InxGa1-x)2Se3 Precursor Films”, Applied Physics Letters, Vol. 65, pp. 198-200, 1994.
    24. Tuttle J.R., Contreras M.A., Tennant A., Albin D. and Noufi R., “High-Efficiency Thin-Film Cu(ln, Ga)Se,-Based Photovoltaic Devices: Progress Towards A Universal Approach to Absorber Fabrication”, Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, New York, pp. 415-421, 1993.
    25. Kushiya K, Ohshita M, Hara I, Tanaka Y, Sang B, Nagoya Y, Tachiyuki M. and Yamase O., “Yield issue on the fabrication of 30cm×30cm-sized CIGS-based thin-film modules”, Solar Energy Materials and Solar Cells, Vol. 75(1-2), pp. 171-178, 2003.
    26. Romeo A., Terheggen M., Abou-Ras D., Batzner D.L., Haug F. J., Kalin M., Rudmann D. and Tiwari A. N., “Development of thin-film Cu(In,Ga)Se-2 and CdTe solar cells”, Progress Photovolt: Research Application, Vol. 12, pp. 97, 2004.
    27. 劉茂煌, “奈米光電池”, 工業材料雜誌, Vol. 203, 2004.
    28. Nazeeruddin Md. K., Zakeeruddin S.M., Humphry-Baker R., Jirousek M., Liska P., Vlachopoulos N., Shklover V., Fischer C.H. and Gratzel M., “Acid-Base Equilibria of (2,2'- Bipyridyl- 4,4'- dicarboxylic acid) ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania”, Inorganic Chemistry”, Vol. 38, pp. 6298–6305, 1999.
    29. Finnie K.S., Bartlett J.R. and Woolfrey J.L., “Vibrational spectroscopic study of the coordination of (2,2’-bipyridyl-4,4’ dicarboxylic acid) ruthenium(Ⅱ) complexes to the surface of nanocrystalline titania”, Langmuir, Vol. 14, pp. 2744–2749, 1998.
    30. Bauer C., Boschloo G., Mukhtar E. and Hagfeldt A., “Interfacial electron-transfer dynamics in Ru (tcterpy)(NCS)3- sensitized TiO2 nanocrystalline solar cells”, Journal of Physical Chemistry B, Vol. 106, pp. 12693–12704, 2002.
    31. Argazzi R., Bignozzi C.A., Heimer T.A., Castellano F.N. and Meyer G.J., “Enhanced spectral sensitivity from ruthenium (II) polypyridyl based photovoltaic devices”, Inorganic Chemistry, Vol. 33, pp. 5741–5749, 1994.
    32. Finnie K., Bartlett J. and Woolfrey J., “Vibrational Spectroscopic Study of the Coordination of ( 2,2 '-Bipyridyl-4 ,4 '-dicarboxylic acid ) ruthenium(II) Complexes to the Surface of Nanocrystalline Titania”, Langmuir, Vol. 14, pp. 2744–2749, 1998.
    33. Nazeeruddin Md. K., Splivallo R., Liska P., Comte P. and Grätzel M., “A swift dye uptake procedure for dye-sensitized solar cells”, Langmuir, Vol. 16, pp. 8525–8528, 2000.
    34. Murakoshi K., Kano G., Wada Y., Yanagida, S., Miyazaki H., Matsumoto M. and Murasawa S., “Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell”, Jounal of Electroanalytical Chemistry, Vol. 396, pp. 27–34, 1995.
    35. Sayama K., Sugihara H. and Arakawa H., “Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye”, Chemistry of Materials, Vol. 10, pp. 3825–3832, 1998.
    36. Klein C., Nazeeruddin M.K., Censo D.D., Liska P. and Grätzel M., “Amphiphilic Ruthenium Sensitizers and their Applications in Dye Sensitized Solar Cell”, Inorganic Chemistry, Vol. 43, pp. 4216–4226, 2004.
    37. Bach U., Lupo D., Comte P., Moser J.E., Weissortel F., Salbeck J. Spreitzer H. and Grätzel M., “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature, Vol. 395, pp. 583, 1998.
    38. Regan B.O. and Schwartz D.T., “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL'NSC/CuSCN: initiation and potential mechanism”, Chemistry of Materials, Vol.10, pp. 1501-1509, 1998.
    39. Regan B.O. and Schwartz D.T., “Effect dye-sensitized charge separation in a wide-band-gap p-n heterojunction”, Journal of Applied Physics, Vol. 80, pp. 4749–4754, 1996.
    40. Regan B.O. and Schwartz D.T., Zakeeruddin S.M., and Grätzel M., “Electrodeposited Nanocomposite n-p Heterojunctions for Solid-. State Dye-Sensitized Photovoltaics”, Advanced Materials, Vol. 12, pp. 1263–1267, 2000.
    41. Grätzel M., “Photoelectrochemical cells”, Nature, Vol. 414, pp. 338, 2001.
    42. Bach U., Lupo D., Moser J.E., Weissortel F., Salbexk J., Spreitzer H. and Grätzel M., “Solid-state dye-sensitized m esoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature, Vol. 395, pp. 583-584, 1998.
    43. Usui H., Matsui H., Tanabe N. and Yanagida S., “Experiments on a dynamic model for the transformation of crop residue in soil”, Journal of Photochemistry Photobiology A: Chemistry, Vol. 164, pp. 97-101, 2004.
    44. Kima D.W., Jeong Y.B., Kima S.H., Lee D.Y. and Song J.S., “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte”, Chemical Communications, pp. 2972, 2002.
    45. Komiya R., Han L., Yamanaka R., Islam A. and Mitate T., “Effect dye-sensitized charge separation in a wide-band-gap p-n heterojunction”, Journal of Photochemistry Photobiology A: Chemistry, Vol. 164, pp. 123-127, 2004.
    46. Liu Y., Hagfeldt A., Xiao X. and Lindquist S., “Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell”, Solar Energy Materials and Solar Cells , Vol. 55, pp. 267–281, 1998.
    47. Hara K. H., Horiguchi T., Kinoshita T., Sayama K. and Arakawa H., “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Solar Energy Materials and Solar Cells, Vol. 70, pp. 151–161, 2001.
    48. Shaheen S.E., Radspinner R., Peyghambarian N. and Jabbour G.E., ”Fabrication of bulk heterojunction plastic solar cell by screenprinting”, Applied Physical Letters, Vol. 79, pp.2996-2998, 2001.
    49. Bharathan J. and Yang Y., ”Polymer electroluminescent devices processed by inkjet priting:1. Polymer light emitting logo”, Applied Physical Letters, Vol. 72, pp.2660-2662, 1998.
    50. Brabec C.J., Padinger F., Hummelen J.C., Janssen R.A. and Sariciftci N.S., “Realization of large area flexible fullerene- conjugated polymer photocells:A route to plastic solar cells”, Synthetic Metals, Vol. 102, pp. 861-864, 1999.
    51. Kallmans H. and Pope M., “Photovoltaic effect in organic crystals”, Journal of Chemical Physics, Vol. 30, pp.585-586, 1958.
    52. Ghosh A.K. and Feng T., “Merocyanine organic solar cells”, Journal of Applied Physics, Vol. 49, pp. 5982-5989, 1978.
    53. Tang C.W., “Two-layer organic photovoltaic cell”, Applied Physical Letters, Vol. 48, pp. 183-185, 1986.
    54. Yu G., Zhang C. and Heeger A.J., “Dual-function semiconducting polymerdevices light-emitting and photodetecting diodes”, Applied Physical Letters, Vol. 64, pp.1540-1542, 1993.
    55. Halls J.J.M., Pichler K., Friend R.H., Moratti S.C. and Holmes A.B., “Exciton diffusion and dissociation in a poly (p-phenylenevinylene) /C60heterojunction photovoltaic cell”, Applied Physical Letters, Vol. 68, pp. 3120-3122, 1996.
    56. Sariciftci N. S., Smilowitz L., Heeger A. J., Wudl F., “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, Vol. 258, pp.1474-1476, 1992.
    57. Sariciftci N. S., Braun D., Zhang C., Srdanov V.I., Heeger A. J., Stucky G. and Wudl F., “Semiconducting polymer- buckmisterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells”, Applied Physical Letters, Vol. 62, pp. 585-587, 1993.
    58. Yu G., Gao J., Hummelen J., Wudl F. and Heeger A.J., “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science, Vol. 270, pp.1789-1791, 1995.
    59. Koster L. J. A., Mihailetchi V. D. and Blom P. W., “Ultimate efficiency of polymer/fullrene bulk heterojunction solar cell”, Applied Physical Letters, Vol. 88, pp. 093511-1-093511-3, 2006.
    60. Scharber M. C., Muhlbacher D., Koppe M., Denk P., Waldauf C., Heeger A. J. and Brabec C. J., “Design rules for donors in bulk heterojunction solar cells-Towards 10% energy conversion efficiency”, Advanced Materials, Vol. 18, pp.789-794, 2006.
    61. Kwong C. Y., Djurisic A. B., Chui P. C., Cheng K. W. and Chan W. K., “Influence of solvent on film morphology and device performance ofpoly(3-hexylthiophene):TiO2 nanocomposite solar cells”, Chemical Physics Letters, Vol. 384, pp. 372-375, 2004.
    62. Beek W.J.E., Wienk M.M. and Janssen R.A.J., ”Hybrid polymer solar cell based on zinc oxide”, Journal of Materials Chemistry, Vol. 15, pp. 2985-2988, 2005.
    63. Huynh W.U., Dittmer J.J. and Alivisatos A.P., “Hybrid Nanorod -Polymer Solar Cells”, Science, Vol. 29, pp. 2425-2427, 2002.
    64. Arango A. C., Johnson L. R., Bliznyuk V. N., Schlesinger, Z., Carter, S. A. and Hörhold, H., “Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion”, Advanced Materials, Vol. 12, pp. 1689-1692, 2000.
    65. Bartholomew G. P. and Heeger A. J., “Infiltration of regioregular Poly-[2,2-(3-hexylthiopene)] into random nanocrystalline TiO2 networks”, Advanced Functional Materials, Vol. 15, pp. 677-682, 2005.
    66. Milliron D.J., Gur L. and Alivisatos A.P., “Hybrid organic nanocrystal solar cells”, MRS Bulletin, Vol. 30, pp. 41-44, 2005.
    67. van Hal P.A., Wienk M.M., Kroon J.M., Verhees W.J.H., Slooff L.H., van Gennip W.J.H., Jonkheijm P. and Janssen R.A.J., “Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction”, Advanced Materials, Vol. 15, pp. 118-121, 2003.
    68. Svensson M., Zhang F., Veenstra S.C., Verhees W.J.H., Hummelen J.C., Kroon J.M., Inganäs O. and Andersson M.R., “High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative”, Advanced Materials, Vol. 15, pp. 988-991, 2003.
    69. Nazeeruddin Md. K., Humphry-Baker R., Liska P. and Grätzel M.﹐ “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”Journal of Physical Chemistry B, Vol. 107, pp. 8981–8987, 2003.
    70. 王永福, “Joomla架站123--圖解入門很簡單”, 碁峯資訊股份有限公司, 2007.
    71. 林季嫻, “Joomla圖解架站實例應用”, 博碩文化股份有限公司, 2008.

    下載圖示
    2014-07-15公開
    QR CODE