簡易檢索 / 詳目顯示

研究生: 陳漧璟
Chen, Chien-Jing
論文名稱: 金屬狹縫陣列之熱輻射性質受材料耗散、表面電漿及磁場共振子三機制之可調變性與應用
Unique Radiative Properties and Applications of Metallic Slit Arrays Influenced by Material Loss, Surface Plasmon Polaritons, or Magnetic Polaritons
指導教授: 陳玉彬
Chen, Yu-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 104
中文關鍵詞: 磁場共振子金屬耗散LC電路模型表面電漿共振子狹縫陣列輻射性質
外文關鍵詞: LC circuit model, Magnetic polariton, Metal loss, Radiative properties, Slit arrays, Surface plasmon polariton
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁場共振子(Magnetic polaritons, MPs)激發是一種使微奈米週期結構產生異常光穿射與異常光吸收特性的物理機制。過去多數研究傾力於以貴重金屬為材料的週期結構分析磁場共振子,但金屬耗散性對磁場共振子的影響尚未被充分地探討。所以本文主要是針對奈米級金屬狹縫陣列,在波長範圍0.4 m  8.3 m,鋁和鎢會在不同的波段呈現顯著吸收性質,並採用銀狹縫陣列做為比較依準,探討磁場共振子被激發時輻射性質(穿射率、反射率與吸收率),同時檢視LC電路模型預測共振模態激發頻率的適用性,並細究其合適範圍與材料、結構幾何、入射角與波長的相關連性。另外,本文亦藉由週期調整,讓磁場共振子與表面電漿共振子(Surface plasmon polariton, SPP)的激發頻率能縮減差距,以探討模態之間互動對銀狹縫反射率的影響。方法是藉由數值計算獲得狹縫近場電磁場分布、能量密度分布及波印庭向量(Poynting vector)以了解金屬耗散性、表面電漿共振子與磁場共振子作用如何影響狹縫輻射性質。最後,為了彰顯實際運用價值,本文末將利用磁場共振子搭配LC電路模型,以金屬光柵與基板中央有介電質夾層做為結構,針對兩個目標波長及金、鎢兩金屬設計波長選擇性吸收器做為應用範例。文中近場特徵及遠場輻射性質是運用嚴格耦合波理論(Rigorous coupled-wave analysis, RCWA)為基礎的演算法得到。

    Magnetic polariton (MP) is one mechanism for the extraordinary transmission and extraordinary absorption through micro/nanoscale periodic structures. Most previous studies focused on noble metals and metal loss effects on MP were not well-understood. The thesis investigates optical responses (absorptance, reflectance, and transmittance) of lossy metallic slit arrays under MP excitations. The studied wavenumber was between 1.2103 cm1 and 2.5104 cm1 for the spectral regions in which aluminum and tungsten are lossy, which do not coincide. The loss of silver is negligible. The LC circuit model predicting MP frequency is not always valid, and the best fitting constant varies with material, slit geometry, angle of incidence, and wavelength. This work also studies the interplay between MP and surface plasmon polariton (SPP) resonance. Their influences on reflectance from slit arrays were investigated by gradually adjusting the period of silver slit arrays for frequencies of SPP and MP to meet. Electromagnetic fields, energy density and Poynting vectors in the near field are numerically obtained to comprehend interactions between MP and loss and SPP. In this work, the near-field characteristics and the far-field properties will be calculated from codes based on the rigorous coupled-wave analysis (RCWA) to discuss radiative properties of slits array under MP excitation. Lastly, gold and tungsten wavelength-selective absorbers will be designed aiming at two wavelengths. The design is fulfilled with a dielectric spacer clipped between metallic strip and substrate and the LC circuit model is employed to determine slit dimensions at specific wavelengths.

    摘要 i Abstract ii 誌謝 iv Table of Contents v List of Tables vii List of Figures viii List of Symbols x Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Literature Review 3 1.3 Study Motivation 9 Chapter 2 THEORETICAL FRAMEWORK 11 2.1 Physical Mechanism 11 2.1.1 Surface Plasmon Polariton 11 2.1.2 Lossy Material Characteristics 14 2.2 Numerical Model 18 2.2.1 Structure and Optical Constants 18 2.2.2 Rigorous Coupled-Wave Analysis 19 2.2.3 LC Circuit Model 25 2.2.4 Grid Search Method 28 Chapter 3 OPTICAL RESPONSES AT RESONANCE 30 3.1 Normal Incidence 30 3.1.1 Geometrical Effects on MP Frequency Prediction 30 3.1.2 Surface Plasmon Polariton Effects 34 3.1.3 Lossy Material Characteristic Effects 57 3.2 Oblique Incidence 61 3.2.1 Geometrical Effects on MP Frequency Prediction 61 3.2.2 Loss Effects on MP Frequency Prediction 64 Chapter 4 USING LC CIRCUIT MODEL FOR MULTIPLE GRATINGS DESIGN 66 4.1 Design Multiple Gratings at Reference Slit Width 66 4.1.1 Methodology 66 4.1.2 Validity for Generated Structures 71 4.2 Design Multiple Gratings at Reference Resonance Wavelength 74 4.2.1 Concept and Method for Absorbing Surface Design 74 4.2.2 Performances for Designed Structures 83 Chapter 5 CONCLUSIONS AND FUTURE WORKS 93 REFERENCES 95 PUBLICATION LIST 104

    1. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    2. F. I. Baida, and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155423 (2003).
    3. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
    4. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
    5. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 251112 (2007).
    6. B. J. Lee, L. P. Wang, and Z. M. Zhang, "Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film," Opt. Express 16, 11328-11336 (2008).
    7. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, "Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators," Phys. Rev. B 79, 024304 (2009).
    8. J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands through compound periodic array of rectangular holes," J. Appl. Phys. 106, 093108 (2009).
    9. L. P. Wang, and Z. M. Zhang, "Resonance transmission or absorption in deep gratings explained by magnetic polaritons," Appl. Phys. Lett. 95, 111904 (2009).
    10. S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, "Novel optical transmission property of metal-dielectric multilayered structure," J. Phy. D. 42, 225406 (2009).
    11. V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, "Visible frequency magnetic activity in silver nanocluster metamaterial," Appl. Opt. 49, A11-A17 (2010).
    12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    13. F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
    14. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    15. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
    16. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004).
    17. Y.-B. Chen, and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007).
    18. F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," ASME J. Heat Transf. 129, 11-16 (2007).
    19. A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
    20. Y.-B. Chen, J.-S. Chen, and P.-f. Hsu, "Impacts of geometric modifications on infrared optical responses of metallic slit arrays," Opt. Express 17, 9789-9803 (2009).
    21. D. Crouse, and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007).
    22. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanoscience 5, 201-213 (2008).
    23. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, "Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves," Phys. Rev. B 76, 045427 (2007).
    24. R. T. Kristensen, J. F. Beausang, and D. M. DePoy, "Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control," J. Appl. Phys. 95, 4845-4851 (2004).
    25. Y.-B. Chen, and Z. M. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," J. Phys. D 41, 095406 (2008).
    26. H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, "A multilayer-based wideband reflector utilizing a multi-subpart profile grating structure," J. Opt. 12, 065704 (2010).
    27. W. F. Zhang, J. H. Liu, W. P. Huang, and W. Zhao, "Polarization bandpass filter based on one-dimensional photonic crystal heterostructures," J. Opt. Soc. Am. B 26, 1845-1851 (2009).
    28. B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, Z. B. Wang, and T. A. Jiang, "Polarization modulation by tunable electromagnetic metamaterial reflector/absorber," Opt. Express 18, 23196-23203 (2010).
    29. M. C. Wu, and S. Y. Tseng, "Design and simulation of multimode interference based demultiplexers aided by computer-generated planar holograms," Opt. Express 18, 11270-11275 (2010).
    30. N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
    31. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
    32. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Opt. Lett. 31, 3620-3622 (2006).
    33. S. J. Xiong, and R. B. Ouyang, "Magnetoplasmon polaritons and resonant optical transmission of a finite random-thickness superlattice in a magnetic field," J. Phys-Condens. Mat. 7, 3431-3444 (1995).
    34. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, "Study of the surface and bulk polaritons with a negative index metamaterial," J. Opt. Soc. Am. B 22, 1016-1023 (2005).
    35. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
    36. M. Quinten, A. Heilmann, and A. Kiesow, "Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films," Appl. Phys. B 68, 707-712 (1999).
    37. Y.-B. Chen, "Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications," Opt. Express 17, 3130-3140 (2009).
    38. S. S. Xiao, and N. A. Mortensen, "Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays," Opt. Lett. 36, 37-39 (2011).
    39. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
    40. A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, "Propagation of long-range surface plasmon polaritons in photonic crystals," J. Opt. Soc. Am. B 22, 2027-2038 (2005).
    41. F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Opt. Express 13, 70-76 (2005).
    42. G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, "Transmission resonances in plasmonic metallic gratings," J. Opt. Soc. Am. B 28, 253-264 (2011).
    43. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    44. J. Le Gall, M. Olivier, and J.-J. Greffet, "Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton," Phys. Rev. B 55, 10105-10114 (1997).
    45. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007).
    46. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J.-J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
    47. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    48. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
    49. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
    50. V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, "Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium," Opt. Express 15, 16651-16656 (2007).
    51. S. Sundhararajan, A. Pahwa, and P. Krishnaswami, "A comparative analysis of genetic algorithms and directed grid search for parametric optimization," Eng. Comp. 14, 197-205 (1998).
    52. Y. Takahashi, "Evaluation of creep-fatigue life prediction methods for low-carbon nitrogen-added 316 stainless steel," ASME J. Eng. Mater. Technol. 120, 119-125 (1998).
    53. E. D. Gates, Introduction to electronics (Thomson Delmar Learning, 2007).
    54. R. M. Eisberg, Fundamentals of modern physics (Wiley, New York, 1961).
    55. B. J. Lee, Y. B. Chen, and Z. M. Zhang, "Confinement of infrared radiation to nanometer scales through metallic slit arrays," J. Quant. Spectrosc. Radiat. Transf. 109, 608-619 (2008).
    56. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003).
    57. Y.-B. Chen, and K.-H. Tan, "The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters," Int. J. Heat Mass Transf. 53, 5542-5551 (2010).
    58. A. Muscará, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, "Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm," J. Lumin. 121, 293-297 (2006).
    59. S. Basu, Y. B. Chen, and Z. M. Zhang, "Microscale radiation in thermophotovoltaic devices - A review," Int. J. Energy Res. 31, 689-716 (2007).
    60. M. Saito, T. Gojo, Y. Kato, and M. Miyagi, "Optical constants of polymer coatings in the infrared," Infrared Phys. Technol. 36, 1125-1129 (1995).
    61. M. A. Khashan, and A. Y. Nassif, "Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 mm," Opt. Commun. 188, 129-139 (2001).
    62. Y. H. Kuo, and T. L. Chen, "Low-power absorption-type germanium thermo-optic modulator," Electron. Lett. 46, 159-160 (2010).

    無法下載圖示 校內:2016-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE