| 研究生: |
米黛卡 Aziza, Miladina Rizka |
|---|---|
| 論文名稱: |
Dion-Jacobson相鈣鈦礦型Ca2Nan-3NbnO3n+1-(n = 4, 5, 6)奈米片於太陽能水分解電池及自旋電子計算應用之研究 Study of Dion-Jacobson Phase Perovskite Ca2Nan-3NbnO3n+1- (n = 4, 5, 6) Nanosheets as Solar Water-Splitting Cells and Spintronic-computing Applications |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 尖端材料國際碩士學位學程 International Curriculum for Advanced Materials Program |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 二維鈣鈦礦 、斯格明子 、自旋電子學 、水分解 、斯格明子計算 |
| 外文關鍵詞: | two-dimensional perovskite, skyrmions, spintronics, water splitting, skyrmion computing |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Dion-Jacobson相的二維(2-D)鈣鈦礦材料Ca2Nan-3NbnO3n+1-(CNNO)奈米結構因其獨特光電性質,所以具有通過光電化學水分解產生氫的潛力。 在本論文中,我們已經成功的製備了具有n = 4、5和6的不同分子厚度的CNNO二維奈米片。同時,研究CNNO奈米片應用於太陽能水分解電池的可行性,並且同時研究包含使用相干的圓形偏振光ħ/-ħ進行自旋電子水分解和斯格明子(Skyrmion)計算自旋電子學的應用。
斯格明子是具有拓撲穩定性的自旋旋渦的準粒子,可以保持自旋電子的狀態,並深具有潛能應用於載流子信息於下一代自旋電子裝置。磁性斯格明子可以在室溫下生成,其原理由CNNO奈米片中存在著Nb4 +和Nb5 +兩種不同價態而產生雙重交換的機制一個是由於自旋軌道耦合(SOC)對稱性破壞後而引起的Dzyaloshinskii-Moriya相互作用(DMI),故使 CNNO 4奈米片表現出弱的鐵磁性,而CNNO 5和CNNO 6奈米片表現出超順磁性。在不需施加外部磁場的情況下,即可使二維奈米片清楚地觀察到磁性斯格明子現象發生。使用第一原理計算和微磁模擬,可以觀察到磁性斯格明子中有直徑為11-15 nm Néel型的斯格明子存在於CNNO奈米片中,且與實驗結果互相吻合。自旋電子保持在斯格明子磁性拓撲態中會引起氫氣的還原反應,並且可用於未來的能源產生設備中。
A well-crystalline two-dimensional (2-D) perovskite material, Ca2Nan-3NbnO3n+1- (CNNO) nanosheets, derived from the Dion-Jacobson phase has the potential to generate hydrogen through photoelectrochemical water splitting and become the prominent candidate for future spintronic devices. Here, we have successfully fabricated CNNO nanosheets with the different molecular thickness of n = 4, 5, and 6. We investigate not only the feasibility of CNNO nanosheets to be used in solar water-splitting cells, but also spintronic-based applications such as spintronic water splitting and skyrmion computing using coherent circularly ħ/-ħ polarization light.
A skyrmion is a quasiparticle with the topologically stable spin swirls to hold the state of the spin electrons with a potential application as carrier information and holds promises for realizing the next-generation spintronic devices. The magnetic skyrmion can be generated at room temperature and the mechanism comes from two reasons, one is Dzyaloshinskii–Moriya interaction (DMI) happened because of the symmetry breaking of spin-orbit coupling (SOC), and another one is double exchange mechanism that comes from the presence of two valence state of Nb4+ and Nb5+ in CNNO nanosheets. The CNNO4 nanosheets exhibit weak ferromagnetic while CNNO5 and CNNO6 nanosheets exhibit superparamagnetic. The magnetic skyrmion can be clearly observed in those 2D nanosheets without the application of the external magnetic field. Using first-principles calculation and micromagnetic simulation, the magnetic skyrmion in CNNO nanosheets shows Néel-type skyrmion with a diameter of 11-15 nm which is corresponding to the experimental results. The spin electron hold in the topological state of magnetic skyrmion causes reduction reaction of hydrogen gas. Our findings provide insights toward developing room-temperature skyrmion in CNNO nanosheets for future energy generation devices.
1. Puebla, J., et al., Spintronic devices for energy-efficient data storage and energy harvesting. Comms. Mater., 2020. 1(1): p. 24.
2. Wolf, S.A., et al., Spintronics: a spin-based electronics vision for the future. Science, 2001. 294(5546): p. 1488-95.
3. Boulle, O., et al., Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol., 2016. 11(5): p. 449-454.
4. Fert, A., V. Cros, and J. Sampaio, Skyrmions on the track. Nat. Nanotechnol., 2013. 8(3): p. 152-156.
5. Nikolaev, S.A. and I.V. Solovyev, Microscopic theory of electric polarization induced by skyrmionic order in GaV4S8. Phys. Rev. B, 2019. 99(10): p. 100401.
6. Azhar, M. and M. Mostovoy, Incommensurate Spiral Order from Double-Exchange Interactions. Phys. Rev. Lett, 2017. 118(2): p. 027203.
7. Leonov, A.O. and M. Mostovoy, Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun., 2015. 6(1): p. 8275.
8. Mathur, N., M.J. Stolt, and S. Jin, Magnetic skyrmions in nanostructures of non-centrosymmetric materials. APL Mater., 2019. 7(12): p. 120703.
9. Yu, X.Z., et al., Real-space observation of a two-dimensional skyrmion crystal. Nature, 2010. 465(7300): p. 901-904.
10. Rößler, U.K., A.N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals. Nature, 2006. 442(7104): p. 797-801.
11. Bogdanov, A.N. and U.K. Rößler, Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers. Phys. Rev. Lett., 2001. 87(3): p. 037203.
12. Sampaio, J., et al., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol., 2013. 8(11): p. 839-844.
13. Woo, S., et al., Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater., 2016. 15(5): p. 501-506.
14. Fert, A., N. Reyren, and V. Cros, Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater., 2017. 2(7): p. 17031.
15. Huang, S.X. and C.L. Chien, Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Phys. Rev. Lett., 2012. 108(26): p. 267201.
16. Zang, J., et al., Dynamics of Skyrmion Crystals in Metallic Thin Films. Phys. Rev. Lett., 2011. 107(13): p. 136804.
17. Müller, J., et al., Magnetic Skyrmions and Skyrmion Clusters in the Helical Phase of Cu2OSeO3. Phys. Rev. Lett., 2017. 119(13): p. 137201.
18. Luo, H.-B., H.-B. Zhang, and J.P. Liu, Strong hopping induced Dzyaloshinskii–Moriya interaction and skyrmions in elemental cobalt. Npj Comput. Mater., 2019. 5(1): p. 50.
19. Zener, C., Interaction between the $d$-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev., 1951. 82(3): p. 403-405.
20. Woo, S., et al., Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun., 2018. 9(1): p. 959.
21. Hrabec, A., et al., Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun., 2017. 8(1): p. 15765.
22. Janson, O., et al., The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3. Nat. Commun., 2014. 5(1): p. 5376.
23. He, M., et al., Realization of zero-field skyrmions with high-density via electromagnetic manipulation in Pt/Co/Ta multilayers. Appl. Phys. Lett., 2017. 111(20): p. 5.
24. Sugimoto, S., et al., Nonequilibrium skyrmion accumulation induced by direct current in Ir/Co/Pt heterostructure. Appl. Phys. Express, 2019. 12(7): p. 5.
25. Lin, T., et al., Observation of room-temperature magnetic skyrmions in Pt/Co/W structures with a large spin-orbit coupling. Phys. Rev. B, 2018. 98(17): p. 6.
26. Dupé, B., et al., Engineering skyrmions in transition-metal multilayers for spintronics. Nat. Commun., 2016. 7(1): p. 11779.
27. Bizeto, M.A., A.L. Shiguihara, and V.R.L. Constantino, Layered niobate nanosheets: building blocks for advanced materials assembly. J. Mater. Chem., 2009. 19(17): p. 2512-2525.
28. Ebina, Y., et al., Synthesis and In Situ X-ray Diffraction Characterization of Two-Dimensional Perovskite-Type Oxide Colloids with a Controlled Molecular Thickness. Chem. Mater., 2012. 24(21): p. 4201-4208.
29. Sasaki, T., Fabrication of nanostructured functional materials using exfoliated nanosheets as a building block. J. Ceram. Soc. JAPAN, 2007. 115(1337): p. 9-16.
30. Chakhalian, J., A.J. Millis, and J. Rondinelli, Whither the oxide interface. Nat. Mater., 2012. 11(2): p. 92-94.
31. de Araujo, C.A.P., et al., Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995. 374(6523): p. 627-629.
32. Hwang, H.Y., et al., Emergent phenomena at oxide interfaces. Nat. Mater., 2012. 11(2): p. 103-113.
33. Kim, E.-S., et al., Inter-digital capacitors with aerosol-deposited high-K dielectric layer for highest capacitance value in capacitive super-sensing applications. Sci. Rep., 2019. 9(1): p. 680.
34. Li, B.W., et al., Atomic Layer Engineering of High-κ Ferroelectricity in 2D Perovskites. J. Am. Chem. Soc., 2017. 139(31): p. 10868-10874.
35. Li, B.-W., et al., Solution-Based Fabrication of Perovskite Nanosheet Films and Their Dielectric Properties. Jpn. J. Appl. Phys., 2009. 48(9): p. 09KA15.
36. Schlom, D.G., et al., A Thin Film Approach to Engineering Functionality into Oxides. J. Am. Ceram. Soc., 2008. 91(8): p. 2429-2454.
37. Dion, M., M. Ganne, and M. Tournoux, Nouvelles familles de phases MIMII2Nb3O10 a feuillets “perovskites”. Mater. Res. Bull., 1981. 16(11): p. 1429-1435.
38. Jacobson, A.J., J.W. Johnson, and J.T. Lewandowski, Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca2Nan-3NbnO3n+1] (3 ≤ n ≤ 7). Inorg. Chem., 1985. 24(23): p. 3727-3729.
39. Ruddlesden, S.N. and P. Popper, New compounds of the K2NiF4 type. Acta Crystallogr., 1957. 10(8): p. 538-540.
40. Aurivillius, B., The structure type of CaNb2Bi2O9. Arkiv for Kemi, 1950. 1(5): p. 463-480.
41. Li, B.W., et al., Atomic Layer Engineering of High-kappa Ferroelectricity in 2D Perovskites. J. Am. Chem. Soc., 2017. 139(31): p. 10868-10874.
42. Li, B.-W., et al., Impact of perovskite layer stacking on dielectric responses in KCa2Nan−3NbnO3n+1 (n=3–6) Dion–Jacobson homologous series. Appl. Phys. Lett., 2010. 96(18): p. 182903.
43. Parks, R.D., Superconductivity: In Two Volumes: Volume 1. 2018: CRC Press.
44. Rendell-Bhatti, R., et al., Spontaneous creation and annihilation dynamics and strain-limited stability of magnetic skyrmions. cond-mat.mtrl-sci, 2019.
45. Manchon, A. and A. Belabbes, Spin-Orbitronics at Transition Metal Interfaces, in Solid State Physics, Vol 68, R.E. Camley and R.L. Stamps, Editors. 2017, Elsevier Academic Press Inc: San Diego. p. 1-89.
46. Kim, D.-H., et al., Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater., 2019. 18(7): p. 685-690.
47. Gholamvand, Z., et al., Electrochemical Applications of Two-Dimensional Nanosheets: The Effect of Nanosheet Length and Thickness. Chem. Mater., 2016. 28(8): p. 2641-2651.
48. Zhu, Z.C., et al., Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. RSC Adv., 2017. 7(28): p. 17387-17397.
49. Zhou, F., et al., 2D Materials Based Optoelectronic Memory: Convergence of Electronic Memory and Optical Sensor. Res., 2019. 2019: p. 17.
50. Pan, J., S. Lany, and Y. Qi, Computationally Driven Two-Dimensional Materials Design: What Is Next? ACS Nano, 2017. 11(8): p. 7560-7564.
51. Liu, X.L. and M.C. Hersam, 2D materials for quantum information science. Nat. Rev. Mater., 2019. 4(10): p. 669-684.
52. Watthage, S.C., et al., Chapter 3 - Evolution of Perovskite Solar Cells, in Perovskite Photovoltaics, S. Thomas and A. Thankappan, Editors. 2018, Academic Press. p. 43-88.
53. Benedek, N.A., et al., Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans., 2015. 44(23): p. 10543-10558.
54. Crystallography and Chemistry of Perovskites, in Handbook of Magnetism and Advanced Magnetic Materials.
55. Wells, A.F., Structural Inorganic Chemsitry. 1995: Oxford Science publications.
56. Müller, U., Inorganic Structural Chemistry. 1993: Wiley & Sons Ltd.
57. Liu, W. and Y. Xu, Spintronic 2D Materials: Fundamentals and Applications. 2019: Elsevier Science.
58. Maeda, K. and T.E. Mallouk, Comparison of two- and three-layer restacked Dion-Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. J. Mater. Chem., 2009. 19(27): p. 4813-4818.
59. Zhou, Y.N., et al., A Multiple Structure-Design Strategy towards Ultrathin Niobate Perovskite Nanosheets with Thickness-Dependent Photocatalytic Hydrogen-Evolution Performance. Chem. Asian J., 2017. 12(20): p. 2727-2733.
60. Osada, M. and T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem., 2009. 19(17): p. 2503-2511.
61. Virdi, K.S., et al., Band Gap Extraction from Individual Two-Dimensional Perovskite Nanosheets Using Valence Electron Energy Loss Spectroscopy. J. Phys. Chem. C, 2016. 120(20): p. 11170-11179.
62. Beld, W.v.d., Microfluidic pump based on arrays of rotating magnetic microspheres, in Electrical Engineering Microsystems and Microelectronics. 2012, University of Twente.
63. Mohammed, L., et al., Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 2017. 30: p. 1-14.
64. Benz, M. Superparamagnetism : Theory and Applications. 2010.
65. Clemons, T.D., R.H. Kerr, and A. Joos, 3.10 - Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications, in Comprehensive Nanoscience and Nanotechnology (Second Edition), D.L. Andrews, R.H. Lipson, and T. Nann, Editors. 2019, Academic Press: Oxford. p. 193-210.
66. Majumdar, S., H.S. Majumdar, and R. Österbacka, 1.05 - Organic Spintronics, in Comprehensive Nanoscience and Technology, D.L. Andrews, G.D. Scholes, and G.P. Wiederrecht, Editors. 2011, Academic Press: Amsterdam. p. 109-142.
67. Manchon, A. and A. Belabbes, Chapter One - Spin-Orbitronics at Transition Metal Interfaces, in Solid State Physics, R.E. Camley and R.L. Stamps, Editors. 2017, Academic Press. p. 1-89.
68. Cullity, B.D. and C.D. Graham, Introduction to Magnetic Materials. Introduction to Magnetic Materials. 2008. i-xvii.
69. Eyrich, C., et al., Exchange stiffness in thin film Co alloys. J. Appl. Phys., 2012. 111.
70. Dijk, B.P.v., Skyrmions and the Dzyaloshinskii-Moriya Interaction, in Institute for Theoretical Physics. 2014, Utrecht University.
71. Dai, J., Ferroic Materials for Smart Systems: From Fundamentals to Device Applications. 2019: Wiley.
72. Kashid, V., et al., Dzyaloshinskii-Moriya interaction and chiral magnetism in $3densuremath{-}5d$ zigzag chains: Tight-binding model and ab initio calculations. Phys. Rev. B, 2014. 90(5): p. 054412.
73. Nolting, W. and A. Ramakanth, Quantum Theory of Magnetism. 2009: Springer Berlin Heidelberg.
74. Van de Krol, R. and M. Grätzel, Photoelectrochemical Hydrogen Production. 2012.
75. Chen, Z., H.N. Dinh, and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. 2013: Springer New York.
76. Žutić, I., J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications. Rev. Mod. Phys., 2004. 76(2): p. 323-410.
77. Franke-Arnold, S., Optical angular momentum and atoms. Philos. Trans. A Math. Phys. Eng. Sci., 2017. 375(2087): p. 20150435.
78. Cronin, T., A different view: Sensory Drive in the polarized-light realm. Curr. Zool., 2018. 64.
79. Black, P., D. Kuhn, and C. Williams, Quantum Computing and Communication. Adv. Comput., 2002. 56: p. 189-244.
80. Shi, D., Z. Guo, and N. Bedford, Superconducting Nanomaterials. 2015. p. 191-213.
81. Zhang, X., et al., Skyrmion-electronics: Writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys. Condens., 2020. 32: p. 143001.
82. Liu, J.P., Z. Zhang, and G. Zhao, Skyrmions: Topological Structures, Properties, and Applications. 2016: CRC Press.
83. Zeissler, K., et al., Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks. Sci. Rep., 2017. 7(1): p. 15125.
84. Soumyanarayanan, A., et al., Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater., 2017. 16(9): p. 898-904.
85. Tokunaga, Y., et al., A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun., 2015. 6.
86. Das, S., et al., Observation of room-temperature polar skyrmions. Nature, 2019. 568(7752): p. 368-372.
87. First-principles calculations and theory, in Computational Thermodynamics of Materials, Y. Wang and Z.-K. Liu, Editors. 2016, Cambridge University Press: Cambridge. p. 104-149.
88. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999. 59(3): p. 1758-1775.
89. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996. 6(1): p. 15-50.
90. Wagner, C., Exchange Energy and Potential using the Laplacian of the Density. 2012, Ball State University: Muncie, Indiana.
91. Kohanoff, J., Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods. 2006: Cambridge University Press.
92. Gruning, M., Density functional theory with improved gradient and orbital dependent functionals. 2003, Vrije Universiteit: Amsterdam.
93. Groß, A., Theoretical Surface Science: A Microscopic Perspective. 2009: Springer Berlin Heidelberg.
94. Aziza, M.R., et al., Dion-Jacobson Phase Perovskite Ca2Nan-3NbnO3n+1- (n = 4, 5, 6) Nanosheets as a High-κ Photovoltaic Electrode Materials in Solar Water-Splitting Cells. ACS Appl. Nano Mater., 2020.
95. Chatterjee, A.K., 8 - X-Ray Diffraction, in Handbook of Analytical Techniques in Concrete Science and Technology, V.S. Ramachandran and J.J. Beaudoin, Editors. 2001, William Andrew Publishing: Norwich, NY. p. 275-332.
96. Welker, R.W., Chapter 4 - Size Analysis and Identification of Particles, in Developments in Surface Contamination and Cleaning, R. Kohli and K.L. Mittal, Editors. 2012, William Andrew Publishing: Oxford. p. 179-213.
97. Cullity, B.D., Elements of x-ray diffraction. 1978, Reading, MA: Addison-Wesley Publishing Company, Inc.
98. Webb, J. and J.H. Holgate, MICROSCOPY | Scanning Electron Microscopy, in Encyclopedia of Food Sciences and Nutrition (Second Edition), B. Caballero, Editor. 2003, Academic Press: Oxford. p. 3922-3928.
99. van Benthem, K. and S.J. Pennycook, 4.09 - Atomic Resolution Characterization of Semiconductor Materials by Aberration-Corrected Transmission Electron Microscopy, in Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, and H. Kamimura, Editors. 2011, Elsevier: Amsterdam. p. 287-307.
100. Tang, C.Y. and Z. Yang, Chapter 8 - Transmission Electron Microscopy (TEM), in Membrane Characterization, N. Hilal, et al., Editors. 2017, Elsevier. p. 145-159.
101. Sathyanarayana, D.N., Electronic Absorption Spectroscopy and Related Techniques. 2001: Universities Press.
102. Chapter 5 - Characterization methods for nanostructure of materials, in Nanoparticle Technology Handbook (Second Edition), M. Hosokawa, et al., Editors. 2012, Elsevier: Amsterdam. p. 267-315.
103. Strehblow, H.H. and D. Lützenkirchen-Hecht, 2.31 - Spectroscopies, Scattering and Diffraction Techniques, in Shreir's Corrosion, B. Cottis, et al., Editors. 2010, Elsevier: Oxford. p. 1374-1404.
104. Buchner, M., et al., Tutorial: Basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics. J. Appl. Phys., 2018. 124(16): p. 161101.
105. Matsumoto, T., et al., Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice. Sci. Adv., 2016. 2(2): p. e1501280.
106. Bals, S., et al., Annular dark field imaging in a TEM. Solid State Commun., 2004. 130(10): p. 675-680.
107. Lai, Y.S. and Y.H. Su, Photon-Induced Spintronic Polaron Channel Modulator of CeO2-x NP Thin Films Hydrogen Evolution Cells. Adv. Electron. Mater., 2019. 5(1): p. 8.
108. Yuan, J.H., et al., GGA-1/2 self-energy correction for accurate band structure calculations: the case of resistive switching oxides. J. Phys. Commun., 2018. 2(10): p. 16.
109. Ferreira, L.G., M. Marques, and L.K. Teles, Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys. Rev. B., 2008. 78(12): p. 9.
110. Fraune, M., et al., Size dependence of the exchange bias field in NiO/Ni nanostructures. Appl. Phys. Lett., 2000. 77(23): p. 3815-3817.
111. Pandey, T. and D.S. Parker, Magnetic properties and magnetocrystalline anisotropy of Nd2Fe17, Nd2Fe17X3, and related compounds. Sci. Rep., 2018. 8(1): p. 3601.
112. Klinger, M., More features, more tools, more CrysTBox. J. Appl. Crystallogr., 2017. 50: p. 1226-1234.
113. Yuan, H.Y., et al., Synthesis of KCa2Nb3O10 Crystals with Varying Grain Sizes and Their Nanosheet Mono layer Films As Seed Layers for PiezoMEMS Applications. ACS Appl. Mater. Interfaces, 2015. 7(49): p. 27473-27478.
114. Demkov, A.A. and A.B. Posadas, Integration of Functional Oxides with Semiconductors. 2014: Springer New York.
115. Zhang, W., et al., Platinum nanoparticles supported on defective tungsten bronze-type KSr 2 Nb 5 O 15 as novel photocatalyst for efficient ethylene oxidation. J. Mater. Chem. A, 2017. 5.
116. Choi, J.Y., et al., Effect of Si on the Energy Band Gap Modulation and Performance of Silicon Indium Zinc Oxide Thin-Film Transistors. Sci. Rep., 2017. 7: p. 8.
117. Pan, S.H., et al., Photocatalytic performance enhancement of two-dimensional Ruddlesden-Popper type perovskite K2La2Ti3O10 by nitrogen-doping. Mater. Res. Express, 2019. 6(7): p. 9.
118. Ferreira, L.G., M. Marques, and L.K. Teles, Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors. AIP Adv., 2011. 1(3): p. 11.
119. McGillivray, D., et al., Performance Enhancement by Secondary Doping in PEDOT:PSS/Planar-Si Hybrid Solar Cells. ACS Appl. Mater. Interfaces, 2016. 8(50): p. 34303-34308.
120. Ratcliff, E., et al., Formation of interfacial traps upon surface protonation in small molecule solution processed bulk heterojunctions probed by photoelectron spectroscopy. J. Mater. Chem. C, 2013. 1.
121. Ramsden, J.J., Chapter 2 - The nanoscale, in Nanotechnology (Second Edition), J.J. Ramsden, Editor. 2016, William Andrew Publishing: Oxford. p. 19-40.
122. Skumryev, V., et al., Beating the superparamagnetic limit with exchange bias. Nature, 2003. 423(6942): p. 850-853.
123. Barnaś, J., et al., 18 - Thermal spin polarization in bidimensional systems, in Magnetic Nano- and Microwires, M. Vázquez, Editor. 2015, Woodhead Publishing. p. 545-568.
124. Saha, D., et al., Spin-Based Semiconductor Heterostructure Devices. 2011. p. 563-614.
125. Milde, P., et al., Unwinding of a Skyrmion Lattice by Magnetic Monopoles. Science, 2013. 340(6136): p. 1076.
126. Valenzuela, R., Magnetic Ceramics. 2005: Cambridge University Press.
127. Coey, J.M.D., Hard Magnetic Materials: A Perspective. IEEE Trans. Magn., 2011. 47(12): p. 4671-4681.
128. Talapatra, A. and J. Mohanty, Scalable magnetic skyrmions in nanostructures. Comput. Mater. Sci., 2018. 154: p. 481-487.
129. Kok, P., et al., Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007. 79(1): p. 135-174.
130. Jozsa, R. and N. Linden, On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. A-Math. Phys. Eng. Sci., 2003. 459(2036): p. 2011-2032.
131. Spiller, T.P., et al., An introduction to quantum information processing: applications and realizations. Contemp. Phys., 2005. 46(6): p. 407-436.