簡易檢索 / 詳目顯示

研究生: 林國海
Lin, Kuo-Hai
論文名稱: 以水熱法探討奈米級α-Al2O3披覆氫氧基之研究
Surface coating hydroxy of nano α-Al2O3 by hydrothermal treatments
指導教授: 黃紀嚴
Huang, Chi-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: OH基鍵結FTIRα-氧化鋁水熱處理
外文關鍵詞: α-Alumina, hydrothermal treatments, hydroxyl bonds, FTIR
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   奈米級α-Al2O3表面在水系中,對物理或化學的處理效果值得研究。高純度(99%)的氧化鋁原始粉,於不同的溫度及酸鹼條件下,利用水熱反應能適度地改變Al-O及(OH)間的鍵結狀態。類似Gibbsite (Al(OH)3)轉變為Boehmite (AlO(OH))之效應。此一轉換可因此改變鋁水化合物的表面性質,進而提供未來處理技術及應用之依據。

      本研究採用粒徑分佈為100~150nm α-Al2O3原始粉,調整pH值為2、3、4、7及9比較,並控制溫度,來進行微波水熱實驗。經微波水熱處理過的α-Al2O3表面,其AlO-H會隨著加熱的溫度與酸鹼值的不同而有顯著的變化,並利用FTIR及熱重分析證實氧化鋁表面OH鍵結的增加。

      而且在酸性及高溫的條件下,α-Al2O3表面將獲得較高的OH基鍵結披覆量,約達到35%。此一結果經由FTIR光譜儀證實AlO-H鍵結及H-O-H鍵結產生於奈米α-Al2O3表面;以及利用FTIR圖譜將波數為3400~3700 cm-1的吸收峰予以積分對比證實氧化鋁表面OH基鍵結量會隨著溫度的上升而增加,並且在溫度220℃及pH值為2的酸性環境下,將得到最大OH基鍵結吸附量。進一步藉由 TG的分析得到OH基鍵結披覆增加量亦有相同的趨勢。

     The result of surface treatment on nano α-Al2O3 in water system by physical or chemical method is worth studying. In various pH environments and different temperature, primitive powder of alumina of the high purity (99%) will transform the surface bond of Al-O and OH. This has similar effect of Gibbsite (Al (OH)3) is changed into boehmite (AlOOH). This conversion can change the surface property of the aluminum and offer a basis of treatment technology and application in the future.

     The objectives of this research are to investigate the influence of pH and temperature on hydrothermal treatments by microwave heating. This research adopts the size of α-Al2O3 are around 100~150nn. Be modified surface of α-Al2O3 can be represented by AlO-H bonding and identified by FTIR. Experimental results showed that the maximum content of hydroxyl bonds adsorption could reach 35 %, when reaction temperature is higher and under the acid condition. The experimental data of this study can be well discovered AlO-H bonds and H-O-H bonds absorption peaks on 3400~3700 cm-1 by FTIR. We also indicate that hydroxyl bonds adsorption increases as the temperature is rising by integrating the absorption peaks of 3400~3700 cm-1 and thermo-gravimetric (TGA). When reaction temperature is at 220 ℃ and pH is at 2, the surface of α-Al2O3 will adsorb maximum hydroxyl bonds.

    摘要 I Abstract II 致謝 Ⅲ 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1研究背景 1 1-2研究目的 1 第二章 理論基礎與前人研究 3 2-1 α-Al2O3[2][3][4]結晶構造 3 2-2 水熱法原理 4 2-2-1 水熱法(Hydrothermal method)之概述 4 2-2-2 水熱法之原理 5 2-2-3 高壓反應釜的反應容積與溫度之關係 5 2-2-4 水熱法之優點 7 2-3 微波加熱原理 7 2-4 紅外光吸收光譜 9 2-4-1 概述[14] 9 2-4-2 紅外光吸收原理 10 2-4-3 紅外線光譜儀設備 12 2-4-4 紅外線光譜的定性分析方法 14 2-4-5 紅外線光譜的定量分析方法 15 2-5 前人研究 19 第三章 實驗方法與步驟 21 3-1 實驗流程 21 3-2 實驗材料與設備 21 3-2-1 實驗材料 21 3-2-2 實驗設備 23 3-3 實驗步驟 23 3-4 性質分析 24 3-4-1 傅利葉紅外線光譜分析(FTIR) 24 3-4-2 熱差/熱重分析(DTA/TG) 24 3-4-3 X-ray繞射儀分析(X-ray Diffractometer, XRD) 25 第四章 結果與討論 26 4-1 FTIR分析 26 4-1-1 pH值條件對氧化鋁OH基鍵結之結果 26 4-1-2 酸性條件對氧化鋁OH基鍵結之結果 31 4-1-3 溫度條件對氧化鋁OH基鍵結之結果 35 4-2 OH基披覆效果之分析 41 4-3 熱重分析 43 4-4 X-光繞射分析(XRD) 51 第五章 結論與建議 52 5-1 結論 52 5-2 建議 52 參考文獻 54 附錄 58

    1. T. Saegusa (1995), “Organic-inorganic polymers hybrids,” Pure Appl. Chem. 67(12).
    2. Y. M. Shiang, D. P. Birnie Ⅲ, and W. D. Kingery (1997), “Physical Ceramics Principles for Ceramic Science and Engineering,” John Wiley & Sons, New York.
    3. 汪建民主編 (1999),“陶瓷技術手冊(上)、(下)”,中華民國粉末冶金協會,pp.683~714。
    4. 蘇哲儀 (1997),“氧化鋁共沈微粉的向轉換與燒結現象”,碩士論文,國立成功大學資源工程研究所。
    5. G. W. Morey, “Hydrothermal Synthesis,” Journal of the American Ceramic Society, vol.36, no.9, pp.279-285, 1953.
    6. R. I. Walton (2002), “Subcritical Solvothermal Synthesis of Condensed Inorganic materials,” Chemical Society Reviews, vol.31, pp.230-238.
    7. K. G. Knauss, M. J. Dibley, W. L. Bourcier and H. F. Shaw(2001), “Ti(IV) Hydrolysis Constants Derived from Rutile Solubility Measurements made from 100 to 300℃,” Applied Geochemistry vol.16, pp.1115-1128.
    8. G. Demazeau(1999), “Solvothermal Processes: a Route to the Stabilization of New Materials,” Journal of Materials Chemistry, vol.9, pp.15-18.
    9. A. Rabenau(1985), “The Role of Hydrothermal Synthesis in Preparative Chemistry,” Angewandte Chemie: International Edition in English, vol.24, pp.1026-1040.
    10. 陳仲仁(1999), “微波加熱原理、構造、應用與研究”, 食品工業月刊,31(7),pp.31-34.
    11. 陳仲仁(2002), “微波混合能源加熱應用”, 食品工業,34(7),pp. 4-13.
    12. 陳仲仁(1999), “電腦輔助工程在微波加熱上的應用與研究”, 食品工業月刊,31(4),pp. 23-31.
    13. H. M. Kingston and L. B. Jassie (1988), “Introduction to Microwave Sample Preparation,” Washington, DC. pp. 7-13.
    14. Douglas A. Skoog and James J. Leary (1994), “Principles of Instrumental Analysis,” fourth edition, Saunders College Publishijg pp. 252-288.
    15. L. M. Liz-Marzan, et. Al. (1996) “Synthesis of Nanosized Gold-Silica Core-Shell particles,” Langmuir, 12, 4329-4335.
    16. Clifford D. Fung, Peter W. Cheung, and Wen H. Ko(1986), “A Generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Transactions on Electron Devices, vol. ED-33, No.1 8~18.
    17. P. Bergveld and A. Sibbald (1988), “Analytical and biomedical application of ion-selective field-effect transistors, chapter 2~3,” Elsevier Science Publishing Company Inc. New York, America.
    18. J. Lyklema (1982), “Colloidal Dispersions,” Ed., J. W. Goodwin, The Royal Society of Chemistry, London.
    19. L. M. Liz-Marzan (1996), et. Al. , “Synthesis of Nanosized Gold-Silica Core-Shell particles”, Langmuir, 12, 4329-4335.
    20. Yao-Jung Lee (1997), “A Study on the Phase Formation of PLZT Powder Using Coprecipitated Gels,” Graduate School of Mining, Metallurgy and Material Science, NCKU.
    21. T. Selvam, B. Bandarapu, G.T.P. Maband, H. Toufar and W. Schweiger (2003), “Hydrothermal Transformation of a Layered Sodium Silicate, Kanemite, into Zeolite Beta (BEA),” Microporous and Mesoporous Materials 64 pp. 41-50.
    22. G. Dell’Agli, M. C. Mascolo and G. Mascolo (2004), “Hydrothermal Synthesis of Precursors for Y-TZP/α-Al2O3 Composite,” Powder Technology 148 pp. 7-10.
    23. Dang Duc Vuong, Go Sakai, Kengo Shimanoe and Noboru Yamazoe (2004), “Preparation of Grain Size-controlled tin Oxide Sols by Hydrothermal Treatment for Thin Film Sensor Application,” Sensors and Actuators B 103 pp. 386-391.
    24. 李書賢 (1999), “水熱法製備矽酸鍶薄膜及其性質研究”, 碩士論文,國立成功大學化學工程研究所。
    25. 吳永評 (1994), “熱水法合成PLZT粉末之生成機構”, 碩士論文,國立成功大學資源工程研究所。
    26. 陳東煌 (2003), “複合奈米粒子的製備與應用”, 化工技術第11卷第3期, pp. 180-193.
    27. 林景正和賴宏仁 (1999), "奈米材料技術與發展趨勢", 工業材料, 153期, p95-101.
    28. S. Desset, O. Spalla, P. Lixon, B. Cabane (2002), “Variation of the Surface state of α-alumina through hydrothermal treatments,” Physicochemical and Engineering Aspects 196 pp. 1–10.
    29. 溫至中和林天生 (1997), “奈米複材之應用”, 工業材料, pp. 120 and 125.
    30. Yubao L, De Groot K, De Wijn J, Klein CPAT and Van De Meer S (1994), “Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment,” Mater in Medicine, 5, pp. 326-31.
    31. Zhu, Y., Y. Qian, M. Zhang and Z. Chen (1993), “Preparation of nanocrystalline silver powders by γ-ray radiation combined with hydrothermal treatment,” Materials Letters, vol. 17, p.314-318.
    32. Yury G.G, Per.K, M.Y, K.G N (1994), ”Formation of sp 3-bonded carbon upon hydrothermal treatment of SiC,” Diamond and Related Materials, Vol. 5, p151-162.
    33. H. Katsuki, S. Furuta and A. Shiraishi (1996), “Porous mullite honeycomb by hydrothermal treatment of fired kaolin bodies in NaOH,” J. Porous mater., 299.
    34. So, W.W.; Park, S. B.; Kim, K. J.; Moon, S. J. (1997) “Phase transformation behavior at low temperature in hydrothermal treatment of stable and unstable titanium sol,” J. Colloid and Interface Sci., 191, 398.
    35. G. Patermarakis, P. Kerassovitou (1992), “Study of the mechanism of oxide hydration and oxide pore closure during hydrothermal treatment of porous Al2O3 films,” Electrochim. Acta, 37 125.

    下載圖示 校內:2006-08-29公開
    校外:2008-08-29公開
    QR CODE