簡易檢索 / 詳目顯示

研究生: 薛明通
Syue, Ming-Tong
論文名稱: 新穎磷酸銀/聚二氧乙基噻吩/二硫化鉬奈米複合材光觸媒
Synthesis and characterizations of novel Ag3PO4/PEDOT/MoS2 nanocomposite for use as photocatalyst
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 磷酸銀聚二氧乙基噻吩二硫化鉬光觸媒
外文關鍵詞: Ag3PO4, PEDOT, MoS2, photocatalyst
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗報告中,我們試著將聚二氧乙基噻吩、二硫化鉬與磷酸銀結合形成複合物以提升磷酸銀的光催化降解能力。首先我們使用離子交換法並透過改變前驅物硝酸銀與磷酸氫二鈉的濃度,合成出光催化降解效果較佳的磷酸銀。接著再分別取不同比例的磷酸銀、聚二氧乙基噻吩與二硫化鉬並藉由化學吸附法與離子交換法製備不同組成重量百分比的磷酸銀/聚二氧乙基噻吩與磷酸銀/二硫化鉬複合物。我們使用XRD、XPS、SEM、TEM、PL、UV-Vis來檢測合成的材料,再使用太陽光模擬器與亞甲基藍水溶液測試自製光觸媒的光催化降解效果。經過檢測我們發現聚二氧乙基噻吩/磷酸銀 5wt% 與二硫化鉬/磷酸銀 1wt%有較佳的降解效果。最後我們取在二元相複合物中表現最佳的組成重量百分比例,結合形成磷酸銀/聚二氧乙基噻吩/二硫化鉬複合物,並證實此複合物有最佳的光催化降解效果。

    We report in this study the improvement of the photocatalytic ability of Ag3PO4 through combination of PEDOT and MoS2. First, AgNO3 and Na2HPO4 were used in varying concentrations as precursors to synthesize Ag3PO4 by ion-exchange method. Ag3PO4 was found to possess better degradation performance. Next, we took different ratios of Ag3PO4, PEDOT and MoS2 to prepare different weight percentages of PEDOT/Ag3PO4 and MoS2/Ag3PO4 composites through chemisorption method and ion-exchange method. We used XRD, XPS, SEM, TEM, PL and UV-Vis to inspect the composites. Finally we used methylene blue solution and the solar simulator to test the performance of photocatalysts. Afterwards, we found that PEDOT/Ag3PO4 5wt% and MoS2/Ag3PO4 1wt% had better photodegradation performance after comparisons with other two component systems. Finally, we synthesized the Ag3PO4/PEDOT/MoS2 composite through the best-found parameter in the two component systems and the accompanying better photodegradation performance was demonstrated.

    摘要 I Abstract II Extend Abstract III 致謝 XIV 總目錄 XV 圖目錄 XIX 表目錄 XXIII 第一章 緒論 1 1-1 前言 1 1-2 研究背景 3 1-2-1 光觸媒簡介 3 1-2-2 光催化簡介 4 1-3 研究動機 6 第二章 理論基礎與文獻回顧 9 2-1 磷酸銀光觸媒 9 2-1-1 磷酸銀結構 9 2-1-2 磷酸銀之光催化原理及機制 11 2-2 磷酸銀製備方法 13 2-3 磷酸銀的改質 17 2-3-1改變表面形貌 17 2-3-2 摻雜陽離子 21 2-3-3 表面金屬沉積 21 2-3-4 半導體複合材料 22 2-3-5 碳複合材料 25 第三章 實驗設備與方法 29 3-1 實驗內容與研究項目 29 3-2 實驗步驟 31 3-2-1 藥品與材料 31 3-2-2 實驗步驟 31 3-2-3 光催化實驗 34 3-3 分析儀器介紹 36 3-3-1 X光繞射儀( X-Ray Diffractometer, XRD ) 36 3-3-2掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) 37 3-3-3穿透式電子顯微鏡( Transmission Electron Microscopy, TEM ) 37 3-3-4 X光電子能譜儀( X-ray Photoelectron Spectrometer, XPS ) 38 3-3-5 可見光紫外光分光光譜儀( UV-vis spectrometer ) 39 3-3-6 光致發光光譜儀( Photoluminescence spectrometer ,PL ) 39 第四章 結果與討論 41 4-1 磷酸銀粉末分析 41 4-1-1 磷酸銀晶體結構分析 41 4-1-2 磷酸銀表面形貌分析 43 4-1-3 磷酸銀光降解分析 45 4-2磷酸銀/聚二氧乙基噻吩複合材料性質分析 47 4-2-1 磷酸銀/聚二氧乙基噻吩複合材料晶體結構分析 47 4-2-2 磷酸銀/聚二氧乙基噻吩複合材料表面形貌分析 49 4-2-3 磷酸銀/聚二氧乙基噻吩複合材料穿透式電子顯微鏡分析 52 4-2-4 磷酸銀/聚二氧乙基噻吩複合材料化學鍵結分析 54 4-2-5 磷酸銀/聚二氧乙基噻吩複合材料光學分析 58 4-2-6 磷酸銀/聚二氧乙基噻吩複合材料光致發光光學分析 60 4-2-7 磷酸銀/聚二氧乙基噻吩複合材料光降解分析 62 4-3 磷酸銀/二硫化鉬複合材料性質分析 64 4-3-1 磷酸銀/二硫化鉬複合材料晶體結構分析 64 4-3-2 磷酸銀/二硫化鉬複合材料表面形貌分析 66 4-3-3 磷酸銀/二硫化鉬複合材料穿透式電子顯微鏡分析 71 4-3-4 磷酸銀/二硫化鉬複合材料光學分析 73 4-3-5 磷酸銀/二硫化鉬複合材料光致發光光學分析 75 4-3-6 磷酸銀/二硫化鉬複合材料光降解分析 77 4-4 磷酸銀/聚二氧乙基噻吩/二硫化鉬複合材料性質分析 79 4-4-1 磷酸銀/聚二氧乙基噻吩/二硫化鉬複合材料晶體結構分析 79 4-4-2 磷酸銀/聚二氧乙基噻吩/二硫化鉬複合材料表面形貌分析 81 4-4-3 磷酸銀/聚二氧乙基噻吩/二硫化鉬複合材料光致發光光學分析 84 4-4-4 磷酸銀/聚二氧乙基噻吩/二硫化鉬複合材料光降解分析 86 第五章 結論 88 第六章 參考文獻 89

    [1] A. Fujishima, K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE, Nature, 238 (1972) 37-+.
    [2] S.N. Frank, A.J. Bard, HETEROGENEOUS PHOTOCATALYTIC OXIDATION OF CYANIDE ION IN AQUEOUS-SOLUTIONS AT TIO2 POWDER, J. Am. Chem. Soc., 99 (1977) 303-304.
    [3] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem Soc Rev, 38 (2009) 253-278.
    [4] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chem. Rev., 110 (2010) 6503-6570.
    [5] A. Kudo, H. Kato, I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting, Chem. Lett., 33 (2004) 1534-1539.
    [6] K. Biernat, A. Malinowski, M. Gnat, The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy, (2013).
    [7] Y.-H. Lin, C.-H. Weng, A.L. Srivastav, Y.-T. Lin, J.-H. Tzeng, Facile Synthesis and Characterization of N-Doped TiO2Photocatalyst and Its Visible-Light Activity for Photo-Oxidation of Ethylene, Journal of Nanomaterials, 2015 (2015) 1-10.
    [8] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269-271.
    [9] X.Y. Yang, A. Wolcott, G.M. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Lett., 9 (2009) 2331-2336.
    [10] C. Han, M. Pelaez, V. Likodimos, A.G. Kontos, P. Falaras, K. O'Shea, D.D. Dionysiou, Innovative visible light-activated sulfur doped TiO2 films for water treatment, Applied Catalysis B: Environmental, 107 (2011) 77-87.
    [11] G.Z. Shen, J.H. Cho, J.K. Yoo, G.C. Yi, C.J. Lee, Synthesis and optical properties of S-doped ZnO nanostructures: Nanonails and nanowires, J. Phys. Chem. B, 109 (2005) 5491-5496.
    [12] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc., 121 (1999) 11459-11467.
    [13] K. Zhang, C. Liu, F. Huang, C. Zheng, W. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Applied Catalysis B: Environmental, 68 (2006) 125-129.
    [14] S. Zhang, C. Zhang, Y. Man, Y. Zhu, Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties, Journal of Solid State Chemistry, 179 (2006) 62-69.
    [15] G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, H. Fu, Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6hollow spheres as high performance visible-light driven photocatalysts, J. Mater. Chem., 21 (2011) 887-892.
    [16] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat Mater, 9 (2010) 559-564.
    [17] Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells, Advanced Functional Materials, 21 (2011) 1076-1081.
    [18] P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat Commun, 4 (2013) 2761.
    [19] X. Chia, A.Y. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides, Chem Rev, 115 (2015) 11941-11966.
    [20] X. Ma, B. Lu, D. Li, R. Shi, C. Pan, Y. Zhu, Origin of Photocatalytic Activation of Silver Orthophosphate from First-Principles, The Journal of Physical Chemistry C, 115 (2011) 4680-4687.
    [21] A.L. Linsebigler, G.Q. Lu, J.T. Yates, PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS, Chem. Rev., 95 (1995) 735-758.
    [22] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, EXPLOITING THE INTERPARTICLE ELECTRON-TRANSFER PROCESS IN THE PHOTOCATALYZED OXIDATION OF PHENOL, 2-CHLOROPHENOL AND PENTACHLOROPHENOL - CHEMICAL EVIDENCE FOR ELECTRON AND HOLE TRANSFER BETWEEN COUPLED SEMICONDUCTORS, J. Photochem. Photobiol. A-Chem., 85 (1995) 247-255.
    [23] X. Chen, Y. Dai, X. Wang, Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review, Journal of Alloys and Compounds, 649 (2015) 910-932.
    [24] H. Yu, Q. Dong, Z. Jiao, T. Wang, J. Ma, G. Lu, Y. Bi, Ion exchange synthesis of PAN/Ag3PO4core–shell nanofibers with enhanced photocatalytic properties, J. Mater. Chem. A, 2 (2014) 1668-1671.
    [25] S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C(3)N(4) porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis, ACS Appl Mater Interfaces, 6 (2014) 22116-22125.
    [26] X. Yang, J. Qin, Y. Jiang, K. Chen, X. Yan, D. Zhang, R. Li, H. Tang, Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria, Applied Catalysis B: Environmental, 166-167 (2015) 231-240.
    [27] J. Yan, C. Wang, H. Xu, Y. Xu, X. She, J. Chen, Y. Song, H. Li, Q. Zhang, AgI/Ag3PO4 heterojunction composites with enhanced photocatalytic activity under visible light irradiation, Applied Surface Science, 287 (2013) 178-186.
    [28] X. Guo, N. Chen, C. Feng, Y. Yang, B. Zhang, G. Wang, Z. Zhang, Performance of magnetically recoverable core–shell Fe3O4@Ag3PO4/AgCl for photocatalytic removal of methylene blue under simulated solar light, Catalysis Communications, 38 (2013) 26-30.
    [29] Z. Lou, B. Huang, Z. Wang, R. Zhang, Y. Yang, X. Qin, X. Zhang, Y. Dai, Fast-generation of Ag3PO4 concave microcrystals from electrochemical oxidation of bulk silver sheet, CrystEngComm, 15 (2013) 5070.
    [30] Y. Ma, Q. Kuang, Z. Jiang, Z. Xie, R. Huang, L. Zheng, Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method, Angew Chem Int Ed Engl, 47 (2008) 8901-8904.
    [31] Z. Jiao, Y. Zhang, H. Yu, G. Lu, J. Ye, Y. Bi, Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties, Chem Commun (Camb), 49 (2013) 636-638.
    [32] T. Thongtem, A. Phuruangrat, S. Thongtem, Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation, Current Applied Physics, 8 (2008) 189-197.
    [33] X. Guan, J. Shi, L. Guo, Ag3PO4 photocatalyst: Hydrothermal preparation and enhanced O2 evolution under visible-light irradiation, International Journal of Hydrogen Energy, 38 (2013) 11870-11877.
    [34] J.L. Gunjakar, Y.K. Jo, I.Y. Kim, J.M. Lee, S.B. Patil, J.C. Pyun, S.-J. Hwang, A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity, Journal of Solid State Chemistry, 240 (2016) 115-121.
    [35] P. Amornpitoksuk, K. Intarasuwan, S. Suwanboon, J. Baltrusaitis, Effect of Phosphate Salts (Na3PO4, Na2HPO4, and NaH2PO4) on Ag3PO4Morphology for Photocatalytic Dye Degradation under Visible Light and Toxicity of the Degraded Dye Products, Industrial & Engineering Chemistry Research, 52 (2013) 17369-17375.
    [36] L. Dong, P. Wang, S. Wang, P. Lei, Y. Wang, A simple way for Ag3PO4 tetrahedron and tetrapod microcrystals with high visible-light-responsive activity, Materials Letters, 134 (2014) 158-161.
    [37] Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, J Am Chem Soc, 133 (2011) 6490-6492.
    [38] Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate, CrystEngComm, 14 (2012) 2966.
    [39] J. Wan, L. Sun, J. Fan, E. Liu, X. Hu, C. Tang, Y. Yin, Facile synthesis of porous Ag3PO4 nanotubes for enhanced photocatalytic activity under visible light, Applied Surface Science, 355 (2015) 615-622.
    [40] X. Hua, Y. Jin, K. Wang, N. Li, H. Liu, M. Chen, S. Paul, Y. Zhang, X. Zhao, F. Teng, Porous Ag3PO4 microtubes with improved photocatalytic properties, Catalysis Communications, 52 (2014) 49-52.
    [41] Y. Bi, H. Hu, Z. Jiao, H. Yu, G. Lu, J. Ye, Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties, Phys Chem Chem Phys, 14 (2012) 14486-14488.
    [42] S. Zhang, S. Zhang, L. Song, Super-high activity of Bi3+ doped Ag3PO4 and enhanced photocatalytic mechanism, Applied Catalysis B: Environmental, 152-153 (2014) 129-139.
    [43] Y. Liu, L. Fang, H. Lu, Y. Li, C. Hu, H. Yu, One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4, Applied Catalysis B: Environmental, 115-116 (2012) 245-252.
    [44] T. Yan, H. Zhang, Y. Liu, W. Guan, J. Long, W. Li, J. You, Fabrication of robust M/Ag3PO4(M = Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis, RSC Advances, 4 (2014) 37220.
    [45] W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, Q. Xu, Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, Journal of Materials Chemistry, 22 (2012) 4050.
    [46] L. Cai, Q. Long, C. Yin, Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2 fibers for photocatalytic degradation of black liquor, Applied Surface Science, 319 (2014) 60-67.
    [47] W. Liu, M. Wang, C. Xu, S. Chen, X. Fu, Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B, Materials Research Bulletin, 48 (2013) 106-113.
    [48] C. Dong, K.-L. Wu, M.-R. Li, L. Liu, X.-W. Wei, Synthesis of Ag3PO4–ZnO nanorod composites with high visible-light photocatalytic activity, Catalysis Communications, 46 (2014) 32-35.
    [49] L. Zhang, H. Zhang, H. Huang, Y. Liu, Z. Kang, Ag3PO4/SnO2 semiconductor nanocomposites with enhanced photocatalytic activity and stability, New Journal of Chemistry, 36 (2012) 1541.
    [50] Y.K. Jo, I.Y. Kim, J.M. Lee, S. Nahm, J.-W. Choi, S.-J. Hwang, Surface-anchored CdS@Ag3PO4 nanocomposite with efficient visible light photocatalytic activity, Materials Letters, 114 (2014) 152-155.
    [51] G. Li, L. Mao, Magnetically separable Fe3O4–Ag3PO4 sub-micrometre composite: facile synthesis, high visible light-driven photocatalytic efficiency, and good recyclability, RSC Advances, 2 (2012) 5108.
    [52] Y. Bi, S. Ouyang, J. Cao, J. Ye, Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities, Phys Chem Chem Phys, 13 (2011) 10071-10075.
    [53] J. Zhang, K. Yu, Y. Yu, L.-L. Lou, Z. Yang, J. Yang, S. Liu, Highly effective and stable Ag3PO4/WO3 photocatalysts for visible light degradation of organic dyes, Journal of Molecular Catalysis A: Chemical, 391 (2014) 12-18.
    [54] C. Li, P. Zhang, R. Lv, J. Lu, T. Wang, S. Wang, H. Wang, J. Gong, Selective deposition of Ag(3)PO(4) on monoclinic BiVO(4)(040) for highly efficient photocatalysis, Small, 9 (2013) 3951-3956, 3950.
    [55] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183-191.
    [56] Q. Xiang, D. Lang, T. Shen, F. Liu, Graphene-modified nanosized Ag 3 PO 4 photocatalysts for enhanced visible-light photocatalytic activity and stability, Applied Catalysis B: Environmental, 162 (2015) 196-203.
    [57] X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang, Fabrication of Ag3PO4-Graphene Composites with Highly Efficient and Stable Visible Light Photocatalytic Performance, ACS Catalysis, 3 (2013) 363-369.
    [58] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem Soc Rev, 39 (2010) 228-240.
    [59] L. Liu, J. Liu, D.D. Sun, Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification, Catalysis Science & Technology, 2 (2012) 2525.
    [60] G. Chen, M. Sun, Q. Wei, Y. Zhang, B. Zhu, B. Du, Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water, J Hazard Mater, 244-245 (2013) 86-93.
    [61] Q. Liang, Y. Shi, W. Ma, Z. Li, X. Yang, Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets, Phys Chem Chem Phys, 14 (2012) 15657-15665.
    [62] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat Nanotechnol, 3 (2008) 270-274.
    [63] B. Chai, J. Li, Q. Xu, Reduced Graphene Oxide Grafted Ag3PO4Composites with Efficient Photocatalytic Activity under Visible-Light Irradiation, Industrial & Engineering Chemistry Research, 53 (2014) 8744-8752.
    [64] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 25 (2009) 10397-10401.
    [65] P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv Mater, 26 (2014) 4920-4935.
    [66] S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, Journal of Materials Chemistry A, 1 (2013) 5333.
    [67] Z. Xiu, H. Bo, Y. Wu, X. Hao, Graphite-like C3N4 modified Ag3PO4 nanoparticles with highly enhanced photocatalytic activities under visible light irradiation, Applied Surface Science, 289 (2014) 394-399.
    [68] F.-J. Zhang, F.-Z. Xie, S.-F. Zhu, J. Liu, J. Zhang, S.-F. Mei, W. Zhao, A novel photofunctional g-C3N4/Ag3PO4 bulk heterojunction for decolorization of Rh.B, Chemical Engineering Journal, 228 (2013) 435-441.
    [69] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes - the route toward applications, Science, 297 (2002) 787-792.
    [70] H. Xu, C. Wang, Y. Song, J. Zhu, Y. Xu, J. Yan, Y. Song, H. Li, CNT/Ag3PO4 composites with highly enhanced visible light photocatalytic activity and stability, Chemical Engineering Journal, 241 (2014) 35-42.
    [71] B. Liu, D. Li, Structural transformation induced by locked nucleic acid or 2 '-O-methyl nucleic acid site-specific modifications on thrombin binding aptamer, Chem. Cent. J., 8 (2014) 6.
    [72] J. Tian, H. Li, Z. Xing, L. Wang, A.M. Asiri, A.O. Al-Youbi, X. Sun, Facile synthesis of MWCNTs/Ag3PO4: novel photocatalysts with enhanced photocatalytic activity under visible light, Journal of Nanoparticle Research, 15 (2013).
    [73] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H. Tsang, X. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design, Angew Chem Int Ed Engl, 49 (2010) 4430-4434.
    [74] H. Zhang, H. Huang, H. Ming, H. Li, L. Zhang, Y. Liu, Z. Kang, Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light, Journal of Materials Chemistry, 22 (2012) 10501.
    [75] P. Dong, G. Hou, C. Liu, X. Zhang, H. Tian, F. Xu, X. Xi, R. Shao, Origin of Activity and Stability Enhancement for Ag3PO4 Photocatalyst after Calcination, Materials, 9 (2016) 968.
    [76] A.A. Farah, S.A. Rutledge, A. Schaarschmidt, R. Lai, J.P. Freedman, A.S. Helmy, Conductivity enhancement of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) films post-spincasting, Journal of Applied Physics, 112 (2012) 113709.
    [77] N.K. Unsworth, I. Hancox, C. Argent Dearden, P. Sullivan, M. Walker, R.S. Lilley, J. Sharp, T.S. Jones, Comparison of dimethyl sulfoxide treated highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices, Organic Electronics, 15 (2014) 2624-2631.
    [78] D. Alemu, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy & Environmental Science, 5 (2012) 9662.
    [79] Y. Xia, J. Ouyang, PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells, Journal of Materials Chemistry, 21 (2011) 4927.
    [80] V.S. Sakkopoulos, E. Dalas, N. Paliatsas, K. Emmanouil, P. Malkaj, S.A. Choulis, A. Angelopoulos, T. Fildisis, Correlation between Thickness, Conductivity and Thermal Degradation Mechanisms of PEDOT:PSS Films, (2010) 178-181.
    [81] W.C. Peng, X. Wang, X.Y. Li, The synergetic effect of MoS(2) and graphene on Ag(3)PO(4) for its ultra-enhanced photocatalytic activity in phenol degradation under visible light, Nanoscale, 6 (2014) 8311-8317.
    [82] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J Am Chem Soc, 133 (2011) 10878-10884.

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE