簡易檢索 / 詳目顯示

研究生: 王明楷
Wang, Ming-Kai
論文名稱: 低溫下利用氣相冷凝技術成長銦摻雜氧化鋅奈米結構光學特性分析
Investigation of optical properties of ZnO:In nanostructures grown using vapor cooling condensation technology at low temperature
指導教授: 郭宗枋
Guo, Tzung-Fang
李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 70
中文關鍵詞: 發光二極體電激發光模板法紅移光激發光摻雜氧化鋅
外文關鍵詞: LED, EL, SEM, PL, nanostructure, nanorods, vapor cooling condensation, AAM, ZnO, doping, Indium
相關次數: 點閱:103下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究以新穎氣象冷凝法於低溫下成長氧化鋅奈米結構,藉由陽極多孔氧化鋁模板(the anode aluminum-oxide membrane,AAM) 輔助,可以成長出等向有序的氧化鋅奈米結構陣列。此外,為使的氧化鋅奈米結構具備電特性,利用銦作為n型摻雜物,製備出高載子濃度的ZnO:In奈米結構。同時,以光激發光螢光光譜(PL)比較摻雜前後之光特性,確認摻雜銦對光特性所造成的影響。
    本實驗以熱蒸鍍機作為製備氧化鋅奈米結構的儀器,特殊的液態氮冷凝系統可降低基板溫度,使的氧化鋅奈米結構可在液態氮的溫度下(-196oC)成長。較低的製程溫度可以抑制奈米晶核成長,有利於氧化鋅氣體迅速冷凝以較小的顆粒尺寸進入模板孔洞中堆積,成功克服模板法孔洞阻塞的問題,製備出等向有序的一維氧化鋅奈米結構;另外,於基板上方加裝的真空抽氣系統提供了氧化鋅氣體上升的驅動力,使的氧化鋅更易於沉積於模板孔洞,作物理氣象沉積(physical vapor deposition, PVD)。以此新穎低溫氣象冷凝法製作出來的氧化鋅奈米結構能夠避免一般化學氣象沉積(chemical vapo deposition, CVD)製程溫度過高以及Au催化顆粒難以去除的問題,對之後應用將有更大的發展淺力。
    一般於低溫下成長的氧化鋅奈米結構並不具備良好的電特性,這將對元件的製作上有所侷限,為了製作出氧化鋅奈米結構元件,我們嘗試以銦(Indium)作為n型摻雜物,對氧化鋅奈米結構作摻雜,以提升載子濃度方式改善材料導電性。氧化鋅與銦的摻雜比為10:1,放在同一條鎢舟上均勻混合加熱,利用擴散方式產生ZnO:In分子,繼續加熱將開始蒸鍍。由SEM觀察,ZnO:In奈米柱結構的長寬各為200nm以及100nm, 具有近似於C軸成長的纖鋅礦六角柱狀結構,由AAM模板輔助成長的ZnO:In奈米柱具有C軸優先成長及等向有序的生長趨勢。由室溫光激發量測(RTPL)觀察可以得知ZnO:In奈米柱具有較強的綠光放射,波長約520m,一般解釋為缺陷發光,而經過熱處理的ZnO:In奈米柱則具有更強的缺陷發光。相較於純ZnO nanorod而言,有較多的載子存在,可以改善氧化鋅奈米柱的電特性。而由低溫光激發光量測(LTPL)觀察可以看出,熱處理後ZnO:In奈米柱的NBE發光機制有紅移且寬展的趨勢,可以證實銦確實有摻雜進入氧化鋅奈米柱而進一步提升載子濃度。
    接著,將本研究所備製ZnO:In奈米柱結構沉積在P型氮化鎵表面以製作P型氮化鎵與N型銦摻雜氧化鋅奈米結構之p-n 發光二極體元件,利用光阻作為ITO電極與基板的隔絕,探討此奈米結構元件的發光特性。經由電激發光量測(EL)觀察,ITO/n-ZnO:In/p-GaN奈米結構元件由於n-ZnO:In奈米柱載子濃度過高,造成發光層落在p-GaN而發出藍光。另外,為了嘗試得到氧化鋅的電激發光,以未摻雜的ZnO奈米柱取代ZnO:In奈米柱,並以濕氧化試圖降低ZnO奈米柱的濃度,製作ITO/i-ZnO/p-GaN奈米結構元件。經由電激發光量測,發光波段仍舊為p-GaN的藍光,推測為ZnO奈米柱載子濃度仍舊不夠低所造成。

    This study investigates the growth of ZnO nanorods using novel vapor cooling condensation method at low temperature. With assistance of anode aluminum oxide membrane (AAM), the isotropy and uniform ZnO nanorods array can be fabricated. Moreover, to improve the electrical conductivity of ZnO nanorods, Indium-doped ZnO (ZnO:In) is a promising structure. Indium is used to be n-dopant to increase the carrier concentration. Meanwhile, because of the raising carrier concentration, the difference of optical property between ZnO and ZnO:In nanorods can be observed depending on the Photoluminescence(PL) measurement,.
    ZnO nanorods are grown in thermal coater at quite low temperature due to the designed vapor cooling system. The growth of nano nucleuses can be suppressed due to the lower temperature which causes vapor ZnO quenched to a smaller particle rapidly and deposited into the AAM pores easily. In addition, the vacuum pumping system provides a driving force to make ZnO molecule through the same direction, and it is helpful for ZnO molecule to do the physical vapor condensation (PVD) through the pores of AAM template. The unremovable catalyst on the top of nanorods and the exceeding high processing temperature caused from the general chemical vapor deposition (CVD) method could be avoided by using vapor cooling condensation method, and it is helpful for the further application.
    In general, ZnO nanorods structure grown at low temperature do not have good electrical conductivity, and it will restrict the further device fabrication. In order to fabricate the ZnO nanorods structure device, doping Indium in ZnO is a proper way to increase the carrier concentration and improve the electrical conductivity. The doping atomic proportion of ZnO:In is 10:1. ZnO powder and Indium tablet are put on the same tungsten boat and heated. After maintaining high-enough temperature for 30 minutes, ZnO:In molecule would be brought out by diffusion mechanism. Later, ZnO:In molecule start to evaporated following the increasing temperature of tungsten boat. Through the observation of SEM, It can be seen that the grown ZnO nanorods are hexagonal close-packed wurtize structure. The diameter and length of the ZnO:In nanorods are about 200 nm and 100 nm, respectively. The C-axis preferred orientation and mutually vertical array can be found. From PL measurement, stronger green emission can be observed in ZnO:In nanorods indicating more defeat in ZnO:In nanorods in comparison with ZnO nanorods. In further, the even stronger green emission observed in annealed ZnO:In nanorods indicates the even more defects existing to increase the carrier concentration. Basing on the result of low temperature PL measurement, the UV emission of annealed ZnO:In nanorods become red-shift and broadening indicating that Indium element is successfully doping into ZnO nanorods to increase the carrier concentration.
    On the other hand, growing n-ZnO:In nanorods on the surface of p-GaN to form the n-ZnO:In nanorods / p-GaN heterojunction LEDs is the other important topic in this study. Photoresist would be used to be the isolating layer between ITO electrode and p-GaN substrate. The optical property of this nanostructure light emitting device would be discussed. By Electroluminescence(EL) measurement, a broad blue band at 435nm is observed in ITO / n-ZnO:In / p-GaN nanostructure heterojucntion, which is attributed to the excessively high carrier concentration of ZnO:In nanorods causing the depletion region locate in p-GaN layer mostly. In order to fabricate ZnO nanorods light-emitting diode, undoped ZnO nanorods are used to substitute for ZnO:In nanorods to form ITO / i-ZnO / p-GaN nanostructure heterojunction. Wet-oxidation is employed to reduce carrier concentration of ZnO nanorods. However, a similar broad band peak as p-n nanostructure diode is observed in p-i-n nanostructure diode by EL measurement. The luminescence layer not in i-ZnO nanorods might result from the insufficient reduction of carrier concentration in undoped ZnO nanorods treated by wet-oxidation.

    Abstract (Chinese) / I Abstract (English) / III Contents / VI List of Tables/ VIII List of Figures / IX Chapter 1 Introduction / 1 1-1 Nanotechnology / 1 1-2 Nanomaterial / 2 1-2.1 Surface and interface effect / 2 1-2.2 Quantum confinement effect / 4 1-3 ZnO / 6 1-3.1 material property / 6 1-3.2 ZnO/GaN heterouction / 7 Reference / 9 Chapter 2 Review of ZnO nanostructure growth techniques/ 17 2-1 Vapor-Liquid-Solid (VLS) method / 17 2-2 Vapor-Solid (VS) method / 18 2-3 Solution Liquid-Solid (SLS) method / 18 2-4 Template-Based Synthetic Approaches / 19 Reference / 21 Chapter 3 Experiment procedure / 26 3-1 vapor cooling condensation method / 26 3-1.1 Review of vapoe cooling condensation method / 26 3-1.2 vapor cooling condensation method in this experiment / 27 3-2 Fabrication process / 29 3-2.1 Growing ZnO nanostructure / 29 3-2.2 Doping procedure / 30 3-2.3 Growing ZnO:In nanostructure / 30 3-2.4 Annealing procedure / 31 3-2.5 p-n junction fabrication process /32 3-3 Analyzing system / 34 3-3.1 Scanning Electron Microscopy (SEM) / 34 3-3-2 Photoluminescence (PL) / 35 3-3-3 Electroluminescence (EL) / 37 Reference / 39 Chapter 4 Result and discussion / 52 4-1 Scanning Electron Microscopy(SEM) result / 52 4-2 Photoluminescence(PL) result / 53 4-3 Time-Resolved Photoluminscence(TRPL) result / 55 4-4 P-n nanostructure heterojunction discussion / 57 Reference / 60 Chapter 5 Conclusion / 69

    Chapter 1
    [1] P. Russell, Science, vol.299, p358 (2003).
    [2] S. W. Koch and A. Knorr, Scienc., vol. 293, p2217 (2001).
    [3] W. C. W. Chan and S. Nie, Scienc., vol. 281, p2016 (1998).
    [4] J. I. Pascual, N. Lorente, Z. Song, H. Conrad, and H. P. Rust, Nature, vol. 423, p525 (2003).
    [5] J. Aizenberg, D. A. Muller, J. L. Grazul, and D. R. Hamann, Scienc., vol. 299, p1205 (2003).
    [6] Y. Sun and Y. Xia, Scienc., vol. 298, p2176 (2002).
    [7] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, Scienc., vol. 301, p1882 (2003).
    [8] C. M. Niemeyer, Science, vol. 297, p62 (2002).
    [9] G. Y. Tseng and J. C. Ellenbogen, Science, vol. 294, p1293 (2001).
    [10] R. F. Service, Scienc., vol. 293, p782 (2001).
    [11] S. R. Quake and A. Scherer, Scienc., vol. 290, p1536 (2000).
    [12] J. Cumings and A. Zettl, Scienc., vol. 289, p602 (2000).
    [13] S. J. Park, T. A. Taton, and C. A. Mirkin, Science, vol. 295, p1503, (2002).
    [14] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Scienc., vol. 292, p1897 (2001).
    [15] D. L. Huffaker and D. G. Deppe, Appl. Phys. Lett., vol. 73, p520 (1998).
    [16] J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, J. Phys. Chem. B, vol. 105, p11387 (2001).
    [17] E. Betzig and J. K. Trautman, Science, vol. 257, p189 (1992).
    [18] D. Zhang, C. Li, X. Liu, S. Han, T. Tang, and C. Zhou, Appl. Phys. Lett., vol. 83, p1845 (2003).
    [19] H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Science, vol. 293, p76 (2001).
    [20] H. W. Pollack, Materials science and metallurgy, 4th Edition, Englewood Cliffs N. J. Prentice-Hall (1988).
    [21] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science, vol. 293, p269 (2001).
    [22] B. Z. Zhan, M. A .White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, and T. S. Cameron, J. Am. Chem. Soc., vol. 125, p195 (2003).
    [23] 張立德, “奈米材料”, 五南出版社 (2002).
    [24] W. Barthlott and C. Neinhuis, Planta, vol. 202, p1 (1997).
    [25] C. Neinhuis and W. Barthlott, Ann. Bot., vol. 79, p667 (1997).
    [26] N. W. Ashcroft and N. D. Nmermin, Solid State Physics, 2nd Edition, Harcourt (1976).
    [27] S. Veprek, Thin Solid Films, vol. 297, p145 (1997).
    [28] A. P. Alivisatos, Science, vol. 271, p933 (1996).
    [29] L. T. Canham, Appl. Phys. Lett., vol.57, p1046 (1990).
    [30] C. Tsai, K. H. Li, D. S. Kinosky, R. Z. Qian, T. C. Hsu, J. T. Irby, S. K. Banerjee, A. F. Tasch, and J. C. Campbell, Appl. Phys. Lett., vol. 60, p1700 (1992).
    [31] M. B. Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, vol. 281, p2013 (1998).
    [32] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett, vol. 70, p2230 (1997).
    [33] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, J. Cryst. Growth.,. vol. 117, p753 (1992).
    [34] N. W. Emanetoglu, C. Grola, Y. Liu, S. Liang, Y. Lu, Mat. Sci. Semicon. Proc., vol. 2, p247 (1999).
    [35] H. Pan, J. H. Luo, H. Sun, Y. P. Feng, C. K. Poh, J. Y. Lin, Nanotechnology, vol. 17, p2963 (2006).
    [36] T. Aeugle, H. Bialas, K. Heneka, W. Pleyer, Thin Solid Films, vol. 201, p293 (1991).
    [37] P. Mitra, A. P. Chatterjee, H. S. Maiti, Mater. Lett., vol. 35, p33 (1998)
    [38] T. Nakamura, Y. Yamada, T. Kusumori, and H. Minoura, Thin Solid Films, vol. 411, p60 (2002).
    [39] C. T. Lee, Q. X. Yu, B. T. Tang, H. Y. Lee, Appl. Phys. Lett., vol. 78, p3412 (2001).
    [40]Q. X. Yu, B. Xu, Q. H. Wu, Y. Liao, G. Z. Wang, R. C. Fang, H. Y. Lee, C. T. Lee, Appl. Phys. Lett., vol. 83, p4713 (2003).

    chapter 2
    [1] H. C. Hsu, C. Yi. Wu, H. M. Cheng, S. Yang, and W. F. Hsieh, (Conference of Year 2005 Annual Meeting of Chinese Physical Society, Kaohsiung, TAIWAN), oral paper BA-5 (2005).
    [2] H. M. Cheng, H. C. Hsu, and W. F. Hsieh, (Conference of Year 2005
    Annual Meeting of Chinese Physical Society, Kaohsiung, TAIWAN), post paper PK-20, (2005).
    [3] H. M. Cheng, H. C. Hsu, S. Yang, Y. C. Lee, and W. F. Hsieh, (3rd International Conference on Materials for Advanced Technologies),
    oral paper N-9-OR26 (2005).
    [4] C. Y. Wu, H. C. Hsu, H. M. Cheng, S. Yang, and W. F. Hsieh, (3rd
    International Conference on Materials for Advanced Technologies), post paper N-4-PO42 (2005).
    [5] S. Yang, H. C. Hsu, W. R. Liu, T. C. Huang and W. F. Hsieh, in (Conference of Year 2005 Annual Meeting of Chinese Physical Society, Kaohsiung, TAIWAN), oral paper DB-3 (2005).
    [6] (a) Y. Wu, H. Yan, M. Huang, B. Messer, J. Song, and P. Yang, Chem Eur., vol. 8, p1260 (2002).
    (b) M. S. gudiksen, and C. M. Lieber, J. Am. Chem. Soc., vol.122, p 8801 (2002).
    [7] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Tan, Adv. Mater., vol. 15, p353 (2003).
    [8] (a) A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xua, Appl. Phys. Lett., vol. 79, p1039 (2001).(b) G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao, and L. D. Zhang, Materials Science & Engineering A, vol. 186, p165 (2000).

    chapter 3
    [1] S. Kasukabe, S. Yatsuya, and R. Uyeda, Jpn. J. Appl. Phys., vol. 13, p1714 (1974).
    [2] S. G. Kim and J. R. Brock, J. App. Phys., vol. 60, p509 (1986).
    [3] S. Kasukabe, S. Yatsuya, and R. Uyeda, Jpn. J. Appl. Phys., vol. 12, p1675 (1973).
    [4] N. Wada, Jpn. J. Appl. Phys., vol. 6, p553, (1967).
    [5] N. Wada, Jpn. J. Appl. Phys., vol. 7, p1287, (1968).
    [6] C. Kaito, Jpn. J. Appl. Phys., vol. 17, p601, (1978).
    [7] T. Ohno, S. Yatsuya, and R. Uyeda, Jpn. J. Appl. Phys., vol. 15, p 1213, (1976).
    [8] J. G. Wang, M. L. Tian, N. Kumar, T. Mallouk, Nano Letters, vol. 5, p1247, (2005).
    [9] H. C. Bae, S. M. Park, S. C. Park, J. S. Ha, Nanotechnology, vol. 17, p381, (2006)
    [10] P. L. Chen, J. K. Chang, C. T. Kuo, T. Cheng, F. M. Pan, Appl. Phys Lett., vol. 86, p123111, (2005).
    [11] X. H. Liu, J. Q. Wang, J. Y. Zhang, S. R. Yang, J. Mater. Sci., vol. 17, p865, (2006)
    [12] 吳榮勛, 低溫下利用氣相冷凝技術成長氧化鋅奈米結構光學特性分析, 國立成功大學微電子研究所, 碩士論文 (2006).
    [13] 汪建民, 材料分析(Materials Analysis), 中國材料科學學會, (2001)

    chapter 4
    [1] H. J. Fan, F. Fleischera, and W. Lee, SUPERLATTICE MICROST., vol. 36, p95 (2004).
    [2] B. P. Zhang, B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, Appl. Phys. Lett., vol. 83, p1635 (2003).
    [3] J. Jie, Chem. Phys. Lett. vol. 387, p466 (2004).
    [4] K. J. Kim, and Y. R. Park , Appl. Phys. Lett., vol. 78, p475 (2001).
    [5] P. S. Chen, T. H. Lee. L. W. Lai, and C. T. Lee, J. Appl. Phys., vol. 101, p024507 (2007).
    [6] R. J. Molnar, R. Singh, and T. D. Moustakas, Appl. Phys. Lett. vol. 66, p 268 (1995).

    下載圖示 校內:2010-09-12公開
    校外:2012-09-12公開
    QR CODE