| 研究生: |
徐皜胤 Hsu, Hao-Yin |
|---|---|
| 論文名稱: |
外環流對富燃料預混噴流火焰生成奈米碳材料之影響 The Influence of Outer Flows on Carbon Nano-Material Synthesis in Rich Premixed Jet Flames |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 富燃料預混火焰 、外環流 、奈米碳材料 、拉曼光譜儀 |
| 外文關鍵詞: | Combustion Synthesis, Fuel-rich Premixed Flame, Carbon Nano-structures, Raman Spectroscopy |
| 相關次數: | 點閱:119 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的乃是以富燃料預混噴流火焰為基礎,並於外環流通入氧氣與氮氣的混合氣體以合成奈米碳結構。研究中,以同軸燃燒器的內管通入乙烯與空氣之預混氣體,外環通入氧氣/氮氣混合氣。實驗中固定內外環的流速在65 cm/s,改變內環預混氣體的乙烯濃度(10.5%、11.5%,當量比分別為 1.685、1.853),以及外環氧氣濃度(無外環氣、15%、21%)。探討火焰型態、溫度場以及濃度場對於火焰合成奈米碳結構的影響。結果顯示,在適當的外環氧氣引入的情況下可以將火焰長度拉伸,火焰整體顏色變暗,延長了不飽和自由基在火焰中滯留的時間。溫度場的量測結果也顯示出在同一取樣高度,有適當氧氣的引入也將溫度維持在適合奈米碳結構生成的環境(約 970~1300 oC)。由SEM可觀察到在無外環氧氣加入時的碳結構產量明顯少於加入外環氧氣的環境,而在有外環氧氣加入的情況,15%的氧氣生成結果又較21%為佳。以TEM與拉曼光譜儀觀測發現在外環氧濃度15%,中心軸向位置在燃燒器出口50 mm處的奈米碳材料結構最佳。因此在本研究中可得到適當的氧氣引入可有效提升奈米碳結構生成之結論。
Synthesis of carbon nanostructures using partially premixed jet flames was investigated. In this study, both the flow speeds in both the inner and outer tubes were fixed at 65 cm/s, and ethylene/air mixture was used as premixed fuel. The influences of sampling position, gas temperature and oxygen concentration in the outer tube on the synthesis of carbon nanostructures were examined. The results showed that the increase in fuel concentration and oxygen concentration in outer tube leads to an increase of flame height and a wider range of yellow flame (sooty zone). Additionally, a quantity of carbon nano-onions were synthesized at Z = 50 ~ 60 mm for ethylene concentrations of 10.5% and 11.5% with oxygen concentrations of 15%; however, only a few carbon nanostructures were synthesized at Z = 70 mm because of the unfavorable high temperature (above 1400 oC). It has been verified that the key parameters affecting the formation and yield of CNOs were the carbon sources, and the heat source (suitable range around 970 ~ 1300 oC). Scanning electron microscopy (SEM) images confirmed the presence of spherical carbon nano-onions. With TEM and Raman spectroscopy, it was shown that the graphite structure of carbon nano-onions were better under the condition of 15% outer oxygen concentration.
1. Kroto, H., Heath, J., Obrien, S., Curl, R., and Smalley, R., “C (60): Buckminsterfullerene,” Nature, Vol. 318, pp. 162, 1985.
2. Iijima, S., “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56, 1991.
3. Journet, C. and Bernier, P., “Production of carbon nanotubes,” Appl. Phys. a-Mater., Vol. 67, pp. 1, 1998.
4. Pan, Z., Xie, S., Chang, B., Sun, L., Zhou, W., and Wang, G., “Direct growth of aligned open carbon nanotubes by chemical vapor deposition,” Chem. Phys. Lett., Vol. 299, pp. 97, 1999.
5. Matveev, A., Golberg, D., Novikov, V., Klimkovich, L., and Bando, Y., “Synthesis of carbon nanotubes below room temperature,” Carbon, Vol. 39, pp. 155, 2001.
6. Venegoni, D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C., and Kalck, P., “Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor,” Carbon, Vol. 40, pp. 1799, 2002.
7. Pan, C., Liu, Y., Cao, F., Wang, J., and Ren, Y., “Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames,” Micron, Vol. 35, pp. 461, 2004.
8. Seah, C. M., Chai, S. P., and Mohamed, A. R., “Synthesis of aligned carbon nanotubes,” Carbon, Vol. 49, pp. 4613, 2011.
9. Nakazawa, S., Yokomori, T., and Mizomoto, M., “Flame synthesis of carbon nanotubes in a wall stagnation flow,” Chem. Phys. Lett., Vol. 403, pp. 158, 2005.
10. Ajayan, P. and Ebbesen, T., “Nanometre-size tubes of carbon,” Rep. Prog. Phys., Vol. 60, pp. 1025, 1997.
11. Bernholc, J., Roland, C., and Yakobson, B. I., “Nanotubes,” Curr. Opin. Solid State Mater. Sci., Vol. 2, pp. 706, 1997.
12. Ebbesen, T. W., “Carbon nanotubes: preparation and properties,” 1 ed, CRC Press. Inc., United Sates of America, 1997.
13. Yakobson, B. and Smalley, R., “Fullerene Nanotubes: C 1,000,000 and Beyond Some unusual new molecules—long, hollow fibers with tantalizing electronic and mechanical properties—have joined diamonds and graphite in the carbon family,” Am. Sci., Vol. 85, pp. 324, 1997.
14. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., and Rinzler, A. G., “Carbon nanotube actuators,” Science, Vol. 284, pp. 1340, 1999.
15. Baughman, R. H., Zakhidov, A. A., and De Heer, W. A., “Carbon nanotubes─the route toward applications,” Science, Vol. 297, pp. 787, 2002.
16. Fiorito, S., “Carbon nanotubes: angels or demons?, Pan Stanford Publishing Pte. Ltd., Singarpore, 2008.
17. Tang, H., Chen, J., Yao, S., Nie, L., Deng, G., and Kuang, Y., “Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode,” Anal. Biochem., Vol. 331, pp. 89, 2004.
18. Cui, H. F., Ye, J. S., Zhang, W. D., Li, C. M., Luong, J. H. T., and Sheu, F. S., “Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites,” Anal. Chim. Acta, Vol. 594, pp. 175, 2007.
19. Wu, B. Y., Hou, S. H., Yin, F., Zhao, Z. X., Wang, Y. Y., Wang, X. S., and Chen, Q., “Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode,” Biosens. Bioelectron., Vol. 22, pp. 2854, 2007.
20. 黃贛麟,“奈米碳簇材料:中空奈米碳球性質簡介,”化學資訊月刊,第16期,第12頁,民國九十一年。
21. Akasaka, T., Wudl, F., and Nagase, S., “Chemistry of nanocarbons,” 1 ed, John Wiley & Sons Ltd., Singapore, 2010.
22. Koudoumas, E., Kokkinaki, O., Konstantaki, M., Couris, S., Korovin, S., Detkov, P., Kuznetsov, V., Pimenov, S., and Pustovoi, V., “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett., Vol. 357, pp. 336, 2002.
23. Keller, N., Maksimova, N. I., Roddatis, V. V., Schur, M., Mestl, G., Butenko, Y. V., Kuznetsov, V. L., and Schlögl, R., “The catalytic use of onion‐like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene,” Angew. Chem. Int. Ed., Vol. 41, pp. 1885, 2002.
24. Cabioc’h, T., Thune, E., Riviere, J., Camelio, S., Girard, J., Guerin, P., Jaouen, M., Henrard, L., and Lambin, P., “Structure and properties of carbon onion layers deposited onto various substrates,” J. Appl. Phys, Vol. 91, pp. 1560, 2002.
25. Gogotsi, Y., “Carbon nanomaterials, Vol. 1, Taylor & Francis Group, LLC., United Stated of America, 2006.
26. Guldi, D. M. and Prato, M., “Excited-state properties of C60 fullerene derivatives,” Acc. Chem. Res., Vol. 33, pp. 695, 2000.
27. Sariciftci, N. S., Smilowitz, L., Heeger, A. J., and Wudl, F., “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, Vol. 258, pp. 1474, 1992.
28. Cravino, A. and Sariciftci, N. S., “Double-cable polymers for fullerene based organic optoelectronic applications,” J. Mater. Chem., Vol. 12, pp. 1931, 2002.
29. Hoppea, H. and Sariciftci, N. S., “Organic solar cells: An overview,” J. Matter. Res., Vol. 19, pp. 1925, 2004.
30. Howard, J. B., Daschowdhury, K., and Vandersande, J. B., “Carbon shells in flames,” Nature, Vol. 370, pp. 603, 1994.
31. K. Das Chowdhurya, J. B. H., John B. VanderSande, “Fullerenic nanostructures in flames,” J. Matter. Res., Vol. 11, 1996.
32. VanderWal, R. L., “Flame synthesis of Ni-catalyzed nanofibers,” Carbon, Vol. 40, pp. 2101, 2002.
33. VanderWal, R. L., “Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment,” Combust. Flame, Vol. 130, pp. 37, 2002.
34. VanderWal, R. L., Berger, G. M., and Hall, L. J., “Single-walled carbon nanotube synthesis via a multi-stage flame configuration,” J. Phys. Chem. B, Vol. 106, pp. 3564, 2002.
35. Height, M. J., Howard, J. B., Tester, J. W., and Vander Sande, J. B., “Flame synthesis of single-walled carbon nanotubes,” Carbon, Vol. 42, pp. 2295, 2004.
36. VanderWal, R. L., Ticich, T. M., and Curtis, V. E., “Diffusion flame synthesis of single-walled carbon nanotubes,” Chem. Phys. Lett., Vol. 323, pp. 217, 2000.
37. Yuan, L., Saito, K., Pan, C., Williams, F., and Gordon, A., “Nanotubes from methane flames,” Chem. Phys. Lett., Vol. 340, pp. 237, 2001.
38. Merchan-Merchan, W., Saveliev, A. V., Kennedy, L., and Jimenez, W. C., “Combustion synthesis of carbon nanotubes and related nanostructures,” Prog. Energ. Combust., Vol. 36, pp. 696, 2010.
39. Arana, C. P., Puri, I. K., and Sen, S., “Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers,” P. Combust. Inst., Vol. 30, pp. 2553, 2005.
40. Liu, T. C. and Li, Y. Y., “Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method,” Carbon, Vol. 44, pp. 2045, 2006.
41. Lee, G. W., Jurng, J., and Hwang, J., “Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame,” Combust. Flame, Vol. 139, pp. 167, 2004.
42. Saveliev, A. V., Merchan-Merchan, W., and Kennedy, L. A., “Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame,” Combust. Flame, Vol. 135, pp. 27, 2003.
43. Beltrame, A., Porshnev, P., Merchan-Merchan, W., Saveliev, A., Fridman, A., Kennedy, L., Petrova, O., Zhdanok, S., Amouri, F., and Charon, O., “Soot and NO formation in methane-oxygen enriched diffusion flames,” Combust. Flame, Vol. 124, pp. 295, 2001.
44. 鍾德華,“旋轉流擴散火焰燃燒合成奈米碳管,”國立成功大學機械工程學系,民國九十五年。
45. 黃緯程,“混合燃料反置擴散火焰之濃度場分析及旋轉流對擴散火焰合成奈米碳結構的影響,”崑山科技大學機械工程研究所,民國九十八年。
46. 黃芳琪,“部份預混噴流火焰合成奈米碳結構,”崑山科技大學機械工程研究所,民國九十六年。
47. 陳俊宏,“掃描式電子顯微鏡操作手冊,”2004; Available from: http://140.116.176.21/www/technique/SOP_nano/JSM7000F%20SOP/SEM_SOP_JSM%207000%20F-1.pdf.
48. Williams, D. B. and Carter, C. B., “The transmission electron microscope,” in Transmission Electron Microscopy (1)Springer Science+Business Media, LLC, New York, USA, 2009.
49. Chang, F.,“高解析穿透式電子顯微鏡儀器操作手冊,” 2003; Available from:
http://140.116.176.21/www/technique/SOP_nano/SOP-(TEM-2010).doc.
50. 莫定山,“Raman光譜原理及應用,” 2006; Available from:
http://www.ksu.edu.tw/cht/unit/D/T/CE/NTC/pageDetail/994/.
51. Czernuszewicz, R. S. and Spiro, T. G., “IR, raman, and resonance raman spectroscopy,” in Inorganic Electronic Structure and Spectroscopy, A.B.P.L. E.I. Solomon, Editor John Wiley and Sons, Inc, New York, USA, 1999.
52. 蔡淑慧,“拉曼光譜在奈米碳管檢測上之應用,” 國家奈米元件實驗室奈米通訊,第12期,第47頁,2005。
53. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., and Saito, R., “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett., Vol. 10, pp. 751, 2010.
54. Roy, D., Chhowalla, M., Wang, H., Sano, N., Alexandrou, I., Clyne, T., and Amaratunga, G., “Characterisation of carbon nano-onions using Raman spectroscopy,” Chem. Phys. Lett., Vol. 373, pp. 52, 2003.
55. Ferrari, A. C., “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun., Vol. 143, pp. 47, 2007.
56. Hsieh, P. T. “顯微拉曼光譜儀操作手冊,” 2008; Available from: http://140.116.176.21/www/technique/SOP/New%20Raman.pdf.
57. Westenberg, A., Raezer, S., and Fristrom, R., “Interpretation of the sample taken by a probe in a laminar concentration gradient,” Combust. Flame, Vol. 1, pp. 467, 1957.
58. Cooperation, S., “Product literature: GC-2014,” SHIMADZU: Tokyo, Japan.
59. Liming Yuan, K. S., Wenchong Hu, Zhi Chen, “Ethylene flame synthesis of will-alligned multi-walled carbon nanotubes,” Chem. Phys. Lett., Vol. 246, pp. 5, 2001.
60. Jed Pella, “PELCO Grids.” 2012; Available from:
http://www.tedpella.com/grids_html/Pelco-TEM-Grids.htm.
61. Pimenta, M., Dresselhaus, G., Dresselhaus, M. S., Cancado, L., Jorio, A., and Saito, R., “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys., Vol. 9, pp. 1276, 2007.