| 研究生: |
陳志嘉 Chen, Jhih-Jia |
|---|---|
| 論文名稱: |
以精密單點定位技術估計GPS 追蹤站之絕對位移速度 Absolute Site Velocity Estimation Using The GPS Precise Point Positioning Technique |
| 指導教授: |
楊名
Yang, Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 精密單點定位 、追蹤站位移速度估計 、國際參考框架 |
| 外文關鍵詞: | Precise Point Positioning, Site Velocity Estimation, International Terrestrial Reference Frame |
| 相關次數: | 點閱:100 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球定位系統(Global Positioning System, GPS)被廣泛應用在大地控制網的建立、追蹤站位移速度估計等高精度的應用中。傳統上,往往是以相對定位的方式獲得高精度之追蹤站位移速度,但所直接得到的也是各追蹤站間的相對速度;而以IGS(International GNSS Service)產品精密星曆、精密時鐘產品定位的精密單點定位(Precise Point Positioning, PPP) 技術則具有可直接獲得在國際參考框架下(International Terrestrial Reference Frame, ITRF)的絕對位置解等優勢。但由於上述IGS產品為各分析中心之弛約制解的加權平均,其原點和地心之間存在差異,連帶影響了PPP的定位成果。因此以PPP所算得的追蹤站位移速度之精確度,也就值得探討。
本研究以均勻分布全球的33個IGS 追蹤站於2002年至2010年的觀測資料,以PPP 方式估計其位移速度,並與在ITRF 下的位移速度相比。成果顯示,在ITRF2000 時期,位移速度之差異在E、N、H三方向各為0.22±1.34mm/yr、-0.93±0.89mm/yr、4.82±2.20mm/yr,藉由Helmert七參數轉換得以消除系統性的差異,差異在三方向各降至-0.07±1.29mm/yr、-0.25±0.57mm/yr、-0.00±2.22mm/yr。而在ITRF2005時期,其差異在三方向各為-0.07±0.73mm/yr、-0.28±0.53mm/yr、2.50±2.04mm/yr , 經過Helmert七參數轉換, 其差異為0.05±0.64mm/yr、-0.33±0.42mm/yr、0.00±2.01mm/yr,僅在高程方向差異有所改善。代表隨著參考框架更新,IGS 產品的品質也有所提升,因此在ITRF2005時期以PPP方式估計追蹤站的之絕對水平位移速度其精確度已在1mm/yr以內。
Global Positioning System (GPS) has been widely used in various applications that require high-precision positioning results, such as geodetic control networks and site velocity estimation. Traditionally, site velocities have been determined using relative GPS positioning for its higher accuracy than that of point positioning. However, the obtained velocity results are thus relative in nature. In recent years, the precise point positioning (PPP) technique, which uses International GNSS Services (IGS) products -- precise satellite ephemerides and clocks -- to directly estimate site positions in the International Terrestrial Reference Frame (ITRF), has become a promising tool for absolute site velocity estimation. Nevertheless, the PPP-derived site positions have been reported to be partially biased as a result of the fact that the above IGS products are based on the loosely constrained IGS analysis centre (AC) solutions. So it is an interesting issue to examine the accuracy of PPP-derived site velocities. In this research, we computed a set of PPP-derived velocity solutions for 33 evenly distributed IGS global tracking stations from 2002 to 2010, and compared them with their respective quantities defined in the ITRF. During the ITRF2000 period, the velocity differences in the east, north, and up directions are 0.22±1.34, -0.93±0.89, 4.82±2.20 mm/yr, respectively. After performing the 7-parameter Helmert transformation to absorb the systematic biases between the PPP results and the ITRF, the differences are significantly reduced to -0.07±1.29, -0.25±0.57, 0.00±2.22 mm/yr, respectively. During the ITRF2005 period, the velocity differences in the east, north, and up directions are -0.07±0.73, -0.28±0.53, 2.50±2.04 mm/yr, and 0.05±0.64, -0.33±0.42, 0.00±2.01 mm/yr after Helmert transformation. Only the vertical component is notably improved by the transformation. This indicates that the quality of IGS products improves with time so the biases existed in the PPP solutions are gradually diminishing. It is concluded that under the current ITRF2005, one can reliably use the PPP technique to obtain highly accurate, on the level of sub-mm/yr, absolute horizontal site velocities.
孔祥元、郭際明、劉宗泉(2009),大地測量學基礎,武漢大學出版社,武漢。
沈三齊(2005),ITRF2000下台灣追蹤站框架之建立與探討TWD97座標系統之變化,國立成功大學測量及空間資訊學系碩士論文,台南。
李征航、張小紅(2009),衛星導航定位新技術及高精度數據處理方法,武漢大學出版社,武漢。
胡明城、魯福(1993),現代大地測量學,測繪出版社,北京。
梁旭文(1990),增進區域性GPS衛星軌道計算精度之分析,國立成功大學航測研究所碩士論文,台南。
許才軍、張朝玉(2009),地殼形變測量與數據處理,武漢大學出版社,武漢。
黃丁發(2009),GPS衛星導航定位技術與方法,科學出版社,北京。
曾清涼、余致義、林宏麟(1988),公分級精度GPS衛星測量研究(I),國科會79年度專題研究報告,國立成功大學測量工程學系,台南。
曾清涼、儲慶美(1999),GPS衛星測量原理與應用,國立成功大學衛星資訊研究中心,第二版,台南。
楊名、江凱偉(2009),97年度全球導航衛星系統(GNSS)資料聯合處理技術期末報告,內政部國土測繪中心。
劉基余(2006),GPS衛星導航定位原理與方法,科學出版社,北京。
魏娜、施闖、李敏、鄒蓉(2009),IGS產品的一致性分析及評價,武漢大學學報.信息科學版,第34卷,第11期,第1363-1367頁。
Altamimi, Z., Sillard, P., and Boucher, C. (2002), ITRF2000: A New Release of the International Terrestrial Reference Frame for Earth Science Application, Journal of Geophysical Research, Vol. 107, No. B10, pp. 2214-2232.
Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., and Boucher, C. (2007), ITRF2005: A New Release of the International Terrestrial Reference Frame Based on Time Series of Station Positions and Earth Orientation Parameters, Journal of Geophysical Research-Solid Earth, Vol. 112, No. B9.
Angermann, D., Thaller, D., and Rothacher, M. (2004) , IERS Technical Note 30, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany.
Blewitt, G., Bock, Y., and Kouba, J. (1994), Constraining the IGS Polyhedron by Distributed Processing, in Densification of ITRF Through Regional GPS Networks, Jet Propulsion Laboratory, Pasadena, U. S. A.
Blewitt, G., and Lavallee, D. (2002), Effect of Annual Signals on Geodetic Velocity, Journal of Geophysical Research-Solid Earth, Vol. 107, No. B7.
Boucher, C., Altamimi, Z., Feissel, M., and Sillard, P. (1996), IERS Technical Note 20, Observatoire de Paris, Paris, France.
Boucher, C., Altamimi, Z., Sillard, P., and Feissel-Vernier, M. (2004), IERS Technical Note 31, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany.
Brockmann, E. (1997), Combination of Solutions for Geodetic and Geodynamic Applications of the Global Positioning System (GPS), Ph.D. dissertation, Astronomical Institute, University of Berne, Berne, Switzerland.
Dragert, H., James, T. S., and Lambert, A. (2000), Ocean Loading Corrections for Continuous GPS: A Case Study at the Canadian Coastal Site Holberg, Geophysical Research Letters, Vol. 27, No. 14, pp. 2045-2048.
Jekeli, C. (2006), Geometric Reference Systems in Geodesy, Division of Geodesy and Geospatial Science, School of Earth Sciences, Ohio State University, U. S. A.
Kouba, J., and Heroux, P. (2001a), Precise Point Positioning Using IGS Orbit and Clock Products, GPS Solutions, Vol. 5, No. 2, pp. 12-28.
Kouba, J., and Springer, T. (2001b), New IGS Station and Satellite Clock Combination, GPS Solutions, Vol. 4, No. 4, pp. 31-36.
Leick, A. (1995), GPS Satellite Surveying (Second Edition), John Wiley and Sons Inc., New York, U. S. A.
Louis, D. B. (1986), World Geodetic System 1984. Proceedings of the 4th International Geodetic Symposium on Satellite Positioning, Vol.1, pp. 69-88.
Louis, M. (1992), IAG Resolutions Adopted at the XXth IUGG General Assembly in Vienna, Journal of Geodesy, Vol. 66, No. 2, pp. 132-133.
Nikolaidis, R. (2002), Observation of Geodetic and Seismic Deformation with the Global Positioning System, Ph.D. dissertation, University of California, San Diego, U. S. A.
NIMA (2000), Department of Defense World Geodetic System 1984-Its Definition and Relationships with Local Geodetic Systems, NIMA Technical Report 8350.2, National Imagery and Mapping Agency, Maryland, U. S. A.
Nocquet, J. M., and Calais, E. (2003), Crustal Velocity Field of Western Europe from Permanent GPS Array Solutions, 1996-2001, Geophysical Journal International, Vol. 154, No. 1, pp. 72-88.
Parkinson, B. W., and Spilker, J. J. (1996), Global Positioning System: Theory and Applications, American Institute of Aeronautics and Astronautics, Washington, DC, U. S. A.
Perez, J. A. S., Monico, J. F. G., and Chaves, J. C. (2003), Velocity Field Estimation Using GPS Precise Point Positioning: The South American Plate Case, Journal of Global Positioning Systems, Vol. 2, No. 2, pp. 90-99.
Ray, J., Dong, D., and Altamimi, Z. (2004), IGS Reference Frames: Status and Future Improvements, GPS Solutions, Vol. 8, No. 4., pp. 251-266.
Schmid, R., Steigenberger, P., Gendt, G., Ge, M., and Rothacher, M. (2007), Generation of a Consistent Absolute Phase Center Correction Model for GPS Receiver and Satellite Antennas, Journal of Geodesy, Vol. 81, No. 12, pp. 781-798.
Seeber, G. (2003), Satellite Geodesy (Second Edition), Walter de Gruyter, New York, U. S. A.
Shen, X. B., and Gao, Y. (2002), Improving Ambiguity Convergence in Carrier Phase-based Precise Point Positioning, Master thesis, The University of Calgary, Alberta, Canada.
Teferle, F. N., Orliac, E. J., and Bingley, R. M. (2007), An Assessment of Bernese GPS Software Precise Point Positioning Using IGS Final Products for Global Site Velocities, GPS Solutions, Vol. 11, No. 3, pp. 205-213.
Witchayangkoon, B. (2000), Elements of GPS Precise Point Positioning, Ph.D. dissertation, The University of Maine, Maine, U. S. A.
Xu, G. C. (2003), GPS Theory Algorithms and Application., Springer-Verlag, New York, U. S. A.
Yu, S. B., Chen, H. Y., and Kuo, L. C. (1997), Velocity Field of GPS Stations in the Taiwan Area, Tectonophysics, Vol. 274, pp.41-59.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H. (1997), Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks, Journal of Geophysical Research, Vol. 102, No. B3, pp. 5005-5017.
ftp://itrf.ensg.ign.fr/pub/itrf/WGS84.TXT
http://igs.org/components/prods.html
http://sideshow.jpl.nasa.gov/mbh/series.html
http://sopac.ucsd.edu/cgi-bin/refinedJavaTimeSeries.cgi
http://tycho.usno.navy.mil/ftp-gps/gpsb2.txt
http://www-app2.gfz-potsdam.de/pb1/igsacc/index_igsacc_ppp.html
http://www.iers.org
http://www.ngs.noaa.gov/ANTCAL