簡易檢索 / 詳目顯示

研究生: 陸翰勳
Lu, Han-Hsun
論文名稱: 旋轉薄膜之強健控制分析
Robust Controller Design of a Spinning Thin Membrane
指導教授: 莊哲男
Juang, Jer-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 57
中文關鍵詞: 太陽風帆旋轉薄膜系統識別穩定性分析
外文關鍵詞: solar sail, spinning membrane, system identification, stability analysis
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,探討以離散化的模型來模擬美國國加太空總署(NASA) 所提出的heliogyro 式太陽風帆飛行器。先前針對此種極輕、極長,且薄的葉片之研究已經可以由動態方程式看出相當可觀的非線性。本論文旨於兩個方面。第一,展示一種合適的系統識別方法以解釋非耦合性heliogyro 葉片的動態行為並且運用識別所得知之系統模型設計控制器。研究方法為利用非線性旋轉薄膜模型,以及其線性化模型來產生模擬資料,再利用時域以及頻域的系統識別技術來識別出系統模型。我們使用principal gain 的方法捕捉非線性所產生的不確定性,進而針對這不確定性區域進行控制器設計。結果顯示隨著系統的非線性程度提高,加上控制器後的系統所能夠達到的阻尼係數會下降。第二,在假設太陽光固定角度照射的情況下,探討太陽光壓對於實際飛行體的影響。透過推倒薄膜風帆的平面運動以及扭轉運動的耦合方程式,及完全耦合的運動方程式,我們發現耦合現象會經由太陽光壓產生耦合。

    Initial studies of a heliogyro membrane blade have revealed significant nonlinearities in the equations of motion. This thesis, presents a discrete modeling approach for the NASA heligogyro concept design and the objectives of this thesis are two-fold. First, this thesis aims to offer a system identification method applicable for describing the dynamic behavior of an uncoupled heliogyro membrane blade and for control design. The approach is to use simulation data generated from linear and nonlinear models of a spinning membrane to identify linear models using time and frequency domain techniques. A controller design is introduced and its stability robustness is described. Results from the implementation of the controller reveal that the achievable level of damping is diminished by the system nonlinearities. Second, this thesis discusses the effects of solar pressure on the spacecraft blade in flight . Equations of motion for a coupled in-plane and twisting motion, and fully coupled motion with bending deformation are derived. A coupling on the twisting and in-plane motion is observed when solar radiation pressure is included.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Research Background and Motivation . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives and Approach . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Development of Solar Sails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 History of Solar Sails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Challenges and Current Developments . . . . . . . . . . . . . . . . . . . . 8 3 Uncertainty Analysis of a Membrane Blade . . . . . . . . . . . . . . . . . . . . 11 3.1 Model Discription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Simulation of a Spinning Membrane Model . . . . . . . . . . . . . . . . . 14 3.2.1 Principal Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 Uncertainty Bound Acquired by Principal Gains . . . . . . . . . . 18 3.3 Design of Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Stability of System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Coupled Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 In-plane Coupled with Twisting Model . . . . . . . . . . . . . . . . . . . . 26 4.2 Fully Coupled Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 Membranes with Solar Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1 Method of Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.1 Vector Representation of Points on the Plate . . . . . . . . . . . . . 37 5.1.2 Coordinate transformation . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Twisting Model with Solar Radiation . . . . . . . . . . . . . . . . . . . . . 41 5.3 Coupled In-plane Twisting Model with Solar Radiation . . . . . . . . . . . 44 6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    [1] Richard H. MacNeal, “The Heliogyro: An Interplanetary Flying Machine,” tech. rep.,
    Astro Research Corporation, Mar. 1967.
    [2] Richard H. MacNeal, “Structural Dynamics of The Heliogyro,” tech. rep., National
    Aeronautics and Space Administration, Washington, D.C., May 1971.
    [3] Jer-Nan Juang, Chung-Han Hung, and William K. Wilkie, “Dynamics of a Slender
    Spinning Membrane,” in Jer-Nan Juang’s Astrodynamics Symposium, Texas, Jun. 2012.
    [4] Daniel V. Guerrant,William K.Wilkie, and Dale A. Lawrence, “Heliogyro Blade Twist
    Control via Reflectivity Modulation,” in 53rd AIAA Structural Dynamics and Materials
    Conference, Apr. 2012.
    [5] Daniel V. Guerrant, and Dale A. Lawrence, “Heliogyro Solar Sail Blade Twist Stability
    Analysis of Root and Reflectivity Controllers,” in AIAA Guidance, Navigation and
    Control Conference, Minneapolis, Aug. 2012.
    [6] Daniel V. Guerrant, Dale A. Lawrence, and William K. Wilkie, “Dynamics and Control
    of The Heliogyro Solar Sail Demonstrator,” in 63rd International Astronautical
    Congress, Naples, Italy, Oct. 2012.
    [7] Jer-Nan Juang, Han-Hsun Lu, and Lucas G. Horta and William K. Wilkie,“Challenges
    Associated with System Identification and Heliogyro of a Spinning Thin Membrane,”
    in 3rd International Conference on Solar Sailing, Glasgow, Jun. 2013
    [8] Earl H. Dowell, “Can Solar Sail Flutter?,” AIAA Journal, Vol 49, Issue 9,Jun. 2011.
    [9] Jer-Nan Juang,Applied System Identification, Prentice Hall, Inc., Englewood Cliffs,
    New Jersey 07632,1994, ISBN 0-13-079211-X.
    [10] Jer-Nan Juang, Lucas G. Horta, and Minh Q. Phan, “System/Observer/Controller Identification
    Toolbox (SOCIT),” NASA Technical Memorandum 107566, Feb. 1992.
    [11] Richard S. Blomquist, Heliogyro Control, PhD thesis, The Robotics Institute, Carnegie
    Mellon University, Apr. 2009.
    [12] Osamu Mori, Yoji Shirasawa, Yuya Mimasu, Yuichi Tsuda, Takanao Saiki, Takayuki
    Yamamoto, Katsuhide Yonekura, Hirokazu Hoshino, and Junichiro Kawaguchi,
    ‘Overview of IKAROS Mission,” 3rd International Conference on Solar Sailing, Glasgow,
    Jun. 2013
    [13] David E. Steitz , “Communications, Navigation And In-Space Propulsion Technologies
    Selected For NASA Flight Demonstration,” NASA Website, 2011.
    [14] Colin R. McInnes, Solar Sailing, Springer-Praxis, Scotland, 2004, ISBN 3540210628,
    9783540210627
    [15] Chung-Han Hung, Dynamic Analysis and 3D Simulation of a Spinning Thin Membrane,
    MS thesis, National Cheng Kung University University, Jan. 2012.
    [16] Jan M. Maciejowski, Multivariable Feedback Design,Addison-Wesley, Cambridge,
    England, UK, 1989, ISBN 0-201-18243-2
    [17] Karl J. strm., Richard M, Murray, Feedback Systems: An Introduction for Scientists and
    Engineers, Princeton University Press, New Jersey Apr. 2008, Chap 12.
    [18] D A Varshalovich, A N Moskalev, and V K Khersonskii, Quantum Theory of Angular
    Momentum, World Scientific Publishing Company, Incorporated, 1989, ISBN
    9971509962, 9789971509965.

    下載圖示 校內:2015-02-11公開
    校外:2016-02-11公開
    QR CODE