| 研究生: |
鄭嘉瑜 Cheng, Chia-Yu |
|---|---|
| 論文名稱: |
以螢光偏極化技術探討膽固醇對離子對雙親分子液胞雙層膜堅硬度的影響 A Study of Cholesterol Effect on Ion-Pair Amphiphile Vesicular Bilayer Rigidity by Using Fluorescence Polarization Technique |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 離子對雙親分子 、陰陽離子液胞 、強制製程 、雙層膜堅硬度 、螢光偏極化技術 、膽固醇 、凝縮作用 、失序作用 |
| 外文關鍵詞: | Ion-pair amphiphile, Catanionic vesicles, Mechanical dispersion fabrication process, Bilayer rigidity, Fluorescence polarization technique, Cholesterol, Condensing effect, Disordering effect. |
| 相關次數: | 點閱:137 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離子對雙親分子具有來源豐富、價格便宜、高化學穩定性及分子可設計性等優點,極有潛力做為製備類脂質體的材料。本研究運用螢光偏極化技術探討膽固醇添加劑對陰陽離子液胞雙層膜堅硬度的影響,及其對液胞穩定性與物理性質的效應。
由螢光非等向性溫度圖譜的實驗結果顯示,膽固醇濃度的增加只會造成陰陽離子液胞雙層膜堅硬度的單調提升。此一效應與膽固醇對脂質體雙層膜堅硬度在高於及低於相轉移溫度時,呈現凝縮及失序的相反作用不同。推究原因可能是本研究所使用的離子對雙親分子 DeTMA-DS (decyltrimethylammonium-dodecylsulfate, C10-C12)、DeTMA-TS (decyltrimethylammonium-tetradecylsulfate, C10-C14)、DTMA-DS (dodecyltrimethylammonium-dodecylsulfate, C12-C12),相較於脂質 dipalmitoylphosphatidylcholine (DPPC, C16-C16) 分子的碳鏈較短,具有較低的堅硬度,膽固醇對雙層膜的失序作用因而無從產生所致。此外,實驗結果也顯示,膽固醇的添加除了可以增進液胞穩定性之外,也使得經由強制製程形成的液胞粒徑隨著膽固醇濃度的增加而增大。本研究所獲得的這些膽固醇添加劑效應的影響結果對促進陰陽離子液胞做為藥物傳輸載體的可行性極有幫助。
Due to their abundant sources, low cost, high chemical stability and molecular designability, lipid-like ion-pair amphipliles (IPAs, also known as catanionic surfactants) have emerged as attractive materials to prepare potential vesicular carriers in drug and gene delivery. In this work, cholesterol (CHOL) effect on bilayer rigidity of decyltrimethylammonium-dodecylsulfate, DeTMA-DS), decyltrimethylammonium-tetradecylsulfate (DeTMA-TS), and dodecyltrimethylammonium-dodecylsulfate (DTMA-DS) catanionic vesicles and dipalmitoylphosphatidylcholine (DPPC) liposomes were systematically studied by using fluorescence polarization technique. Vesicle stability and physical properties of them as the consequences of CHOL addition were also investigated.
The experimental fluorescence anisotropy (FA) thermograms showed that fluorescence anisotropies of catanionic vesicle bilayers were monotonically increased with increasing of CHOL concentration. This effect of CHOL, however, is quite different from that on liposomal bilayers in which CHOL exhibited disordering and condensing effects when the temperatures were lower and higher, respectively, than the main phase transition temperature (Tm) of lipid. The different results are due to the fact that catanionic vesicles with thinner bilayer thickness exhibited much lower bilayer rigidity at temperatures lower than Tm as compared with those of liposomes. Under these conditions, there is no role for the disordering effect of CHOL to play on the ordering of bilayers. Furthermore, vesicle stability and size of vesicles fabricated by the process through the formation of thin films were found to be significantly enhanced with the addition of CHOL and reasonably explained by the increment of bilayer rigidity. The results achieved in this work is beneficial to applications of catanionic vesicles as carriers in drug and gene delivery.
1. C. Tondre, C. Caillet, Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis, Advances in Colloid and Interface Science, 2001, 93, 115-134.
2. A. Jesorka, O. Orwar, Liposomes: technologies and analytical applications, Annual Review of Analytical Chemistry 2008, 1, 801-832.
3. R.R.C. New, Liposomes: a practical approach, IRL Press at Oxford University Press, 1990.
4. 陳炳宏, 馮思慎, 微脂粒在藥物輸送的應用,化工, 2000, 47 (3), 68-84.
5. C. Huang, D. Quinn, Y. Sadovsky, S. Suresh, K.J. Hsia, Formation and size distribution of self-assembled vesicles, PNAS, 2017, 114(11), 2910-2915.
6. D.D. Lasic, Novel applications of liposomes, Trends in Biotechnology, 1998, 16, 307-321.
7. I. Ahmad, M. Longenecker, J. Samuel, T.M. Allen, Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice, Cancer Research, 1993, 53, 1484-1488.
8. P.P. Karmali, A. Chaudhuri, Cationic liposomes as non‐viral carriers of gene medicines: resolved issues, open questions, and future promises, Medicinal Research Reviews, 2007, 27, 696-722.
9. V. Deepthi, A. Kavitha, Liposomal drug delivery system-A review, RGUHS Journal of Pharmaceutical Sciences, 2014, 4, 47-56.
10. O.G. Mouritsen, Lipids, curvature, and nano‐medicine, European Journal of Lipid Science and Technology, 2011, 113, 1174-1187.
11. R.K. Subedi, S.Y. Oh, M.K. Chun, H.K. Choi, Recent advances in transdermal drug delivery, Archives of Pharmacal Research, 2010, 33, 339-351.
12. A. Himanshu, P. Sitasharan, A. Singhai, Liposomes as drug carriers, International Journal of Pharmacy and Life Sciences, 2011, 2, 945-951.
13. S. Bhattacharya, S. Haldar, Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2000, 1467, 39-53.
14. M.J. Blandamer, B. Briggs, P.M. Cullis, B.J. Rawlings, J.B. Engberts, Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC, Physical Chemistry Chemical Physics, 2003, 5, 5309-5312.
15. Y.C. Chung, S.L. Regen, Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants, Langmuir, 1993, 9, 1937-1939.
16. E.W. Kaler, A.K. Murthy, B.E. Rodriguez, J. Zasadzinski, Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, Science, 1989, 245, 1371-1374.
17. E. Marques, O. Regev, A. Khan, B. Lindman, Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects, Advances in Colloid and Interface Science, 2003, 100, 83-104.
18. C. Chien, S. Yeh, Y. Yang, C. Chang, J. Maa, Formation and encapsulation of catanionic vesicles, Journal of the Chinese Colloid and Interface Society, 2002, 24, 31-45.
19. S.J. Yeh, Y.M. Yang, C.H. Chang, Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles, Langmuir, 2005, 21, 6179-6184.
20. E. Soussan, S. Cassel, M. Blanzat, I. Rico‐Lattes, Drug delivery by soft matter: matrix and vesicular carriers, Angewandte Chemie International Edition, 2009, 48, 274-288.
21. K.C. Wu, Z.L. Huang, Y.M. Yang, C.H. Chang, T.H. Chou, Enhancement of catansome formation by means of cosolvent effect: semi-spontaneous preparation method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 599-607.
22. 黃鉦琳, 帶電陰陽離子液胞的形成及其膠化之研究, 成功大學化學工程學系碩士學位論文, 2007.
23. 柯政遠, 乙醇體及陰陽體的製備及其包覆/釋放行為之探討, 成功大學化學工程學系碩士學位論文, 2008.
24. 劉育姍, 陰陽離子液胞包覆維他命 E 醋酸酯之行為探討, 成功大學化學工程學系碩士學位論文, 2011.
25. Y.M. Yang, K.C. Wu, Z.L. Huang, C.H. Chang, On the stability of liposomes and catansomes in aqueous alcohol solutions, Langmuir, 2008, 24, 1695-1700.
26. T. Bramer, M. Paulsson, K. Edwards, K. Edsman, Catanionic drug–surfactant mixtures: phase behavior and sustained release from gels, Pharmaceutical Research, 2003, 20, 1661-1667.
27. A.S.A. Lila, S. Kizuki, Y. Doi, T. Suzuki, T. Ishida, H. Kiwada, Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model, Journal of Controlled Release, 2009, 137, 8-14.
28. 謝佑翎, 乙醇與膽固醇對 DPPC 脂質體雙層膜特性之影響, 成功大學化學工程學系碩士學位論文, 2017.
29. H. Fukuda, K. Kawata, H. Okuda, S.L. Regen, Bilayer-forming ion pair amphiphiles from single-chain surfactants, Journal of the American Chemical Society, 1990, 112, 1635-1637.
30. J.B. Huang, G.X. Zhao, Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant, Colloid and Polymer Science, 1995, 273, 156-164.
31. 徐立銘, 陰陽離子液胞包覆行為之探討, 成功大學化學工程學系碩士學位論文, 2002.
32. 游文月, 共溶劑促進陰陽離子液胞自發性形成之研究, 成功大學化學工程學系碩士學位論文, 2004.
33. J.N. Israelachvili, Intermolecular and surface forces, Academic Press, 2011.
34. A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S.W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, K. Nejati-Koshki, Liposome: classification, preparation, and applications, Nanoscale Research Letters, 2013, 8, 102.
35. D.A. Mannock, R.N. Lewis, R.N. McElhaney, Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Biophysical Journal, 2006, 91, 3327-3340
36. W. Stillwell, T. Dallman, A.C. Dumaual, F.T. Crump, L.J. Jenski, Cholesterol versus α-tocopherol: Effects on properties of bilayers made from heteroacid phosphatidylcholines, Biochemistry, 1996, 35, 13353-13362.
37. R. Malcolmson, J. Higinbotham, P. Beswick, P. Privat, L. Saunier, DSC of DMPC liposomes containing low concentrations of cholesteryl esters or cholesterol, Journal of Membrane Science, 1997, 123, 243-253.
38. T.P. McMullen, R.N. Lewis, R.N. McElhaney, Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes, Biophysical Journal, 2000, 79, 2056-2065.
39. G. El Maghraby, A.C. Williams, B. Barry, Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes, International Journal of Pharmaceutics, 2004, 276, 143-161.
40. K.K. Halling, J.P. Slotte, Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004, 1664, 161-171.
41. L. Zhao, S.S. Feng, N. Kocherginsky, I. Kostetski, DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane, International Journal of Pharmaceutics, 2007, 338, 258-266.
42. R. Krivanek, L. Okoro, R. Winter, Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study, Biophysical Journal, 2008, 94, 3538-3548.
43. D.A. Mannock, M.Y. Lee, R.N. Lewis, R.N. McElhaney, Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778, 2191-2202
44. T.P. McMullen, R.N. Lewis, R.N. McElhaney, Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788, 345-357.
45. D.A. Mannock, R.N. Lewis, R.N. McElhaney, A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2010, 1798, 376-388.
46. M. Lönnfors, O. Engberg, B.R. Peterson, J.P. Slotte, Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes, Langmuir, 2011, 28, 648-655.
47. C. Silva, F.J. Aranda, A. Ortiz, V. Martínez, M. Carvajal, J.A. Teruel, Molecular aspects of the interaction between plants sterols and DPPC bilayers: an experimental and theoretical approach, Journal of Colloid and Interface Science, 2011, 358, 192-201.
48. K.J. Fritzsching, J. Kim, G.P. Holland, Probing lipid–cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13 C solid-state NMR, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828, 1889-1898.
49. M.G. Benesch, R.N. McElhaney, A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014, 1838, 1941-1949.
50. Y. Konno, N. Naito, A. Yoshimura, K. Aramaki, A study on the formation of liquid ordered phase in lysophospholipid/cholesterol/1, 3-butanediol/water and lysophospholipid/ceramide/1, 3-butanediol/water systems, Journal of Oleo Science, 2014, 63, 823-828.
51. M.R. Krause, M. Wang, L. Mydock-McGrane, D.F. Covey, E. Tejada, P.F. Almeida, S.L. Regen, Eliminating the roughness in cholesterol’s β-face: does it matter?, Langmuir, 2014, 30, 12114-12118.
52. M.G. Benesch, R.N. Lewis, R.N. McElhaney, A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Chemistry and Physics of Lipids, 2015, 191, 123-135.
53. M.G. Benesch, R.N. Lewis, D.A. Mannock, R.N. McElhaney, A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs, Chemistry and Physics of Lipids, 2015, 187, 34-49.
54. K. Aramaki, Y. Watanabe, J. Takahashi, Y. Tsuji, A. Ogata, Y. Konno, Charge boosting effect of cholesterol on cationic liposomes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 732-738.
55. D.H. Wolfe, L.J. Lis, O. Kucuk, M.P. Westerman, B.A. Cunningham, S.B. Qadri, W. Bras, P.J. Quinn, Phase transitions between ripple structures in hydrated phosphatidylcholine-cholesterol multilamellar assemblies, Physical Review Letters 1992, 68, 1085-1088.
56. X. Wang, P.J. Quinn, The structure and phase behaviour of alpha-tocopherol-rich domains in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, Biochimie, 2006, 88, 1883-1888.
57. L. Chen, Z. Yu, P.J. Quinn, The partition of cholesterol between ordered and fluid bilayers of phosphatidylcholine: a synchrotron X-ray diffraction study, Biochim Biophys Acta, 2007, 1768, 2873-2881.
58. H.W. Meyert, K. Semmler, P.J. Quinn, The effect of sterols on structures formed in the gel/subgel phase state of dipalmitoylphosphatidylcholine bilayers, Molecular Membrane Biology, 2009, 14, 187-193.
59. A. Ivankin, I. Kuzmenko, D. Gidalevitz, Cholesterol-phospholipid interactions: new insights from surface X-ray scattering data, Physical Review Letters, 2010, 104, 108101(4).
60. D. Ntountaniotis, G. Mali, S.G. Grdadolnik, M. Halabalaki, A.L. Skaltsounis, C. Potamitis, E. Siapi, P. Chatzigeorgiou, M. Rappolt, T. Mavromoustakos, Thermal, dynamic and structural properties of drug AT1 antagonist olmesartan in lipid bilayers, Biochim Biophys Acta, 2011, 1808, 2995-3006.
61. J. Prades, O. Vogler, R. Alemany, M. Gomez-Florit, S.S. Funari, V. Ruiz-Gutierrez, F. Barcelo, Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties, Biochim Biophys Acta, 2011, 1808, 752-760.
62. C. Bonechi, S. Martini, L. Ciani, S. Lamponi, H. Rebmann, C. Rossi, S. Ristori, Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol, PLoS One, 2012, 7, e41438(11).
63. R.G. Wu, J.D. Dai, F.G. Wu, X.H. Zhang, W.H. Li, Y.R. Wang, Competitive molecular interaction among paeonol-loaded liposomes: differential scanning calorimetry and synchrotron X-ray diffraction studies, International Journal of Pharmaceutics, 2012, 438, 91-97.
64. C.L. Armstrong, D. Marquardt, H. Dies, N. Kucerka, Z. Yamani, T.A. Harroun, J. Katsaras, A.C. Shi, M.C. Rheinstadter, The observation of highly ordered domains in membranes with cholesterol, PLoS One, 2013, 8, e66162(10).
65. E. Drolle, N. Kucerka, M.I. Hoopes, Y. Choi, J. Katsaras, M. Karttunen, Z. Leonenko, Effect of melatonin and cholesterol on the structure of DOPC and DPPC membranes, Biochim Biophys Acta, 2013, 1828, 2247-2254.
66. S. Lee, D.W. Jeong, M.C. Choi, Vertical order of DPPC multilayer enhanced by cholesterol-induced ripple-to-liquid ordered (Lo) phase transition: Synchrotron X-ray reflectivity study, Current Applied Physics, 2017, 17, 392-397.
67. T. Ogura, T. Sato, M. Abe, T. Okano, Small angle x-ray scattering and electron spin resonance spectroscopy study on fragrance infused cationic vesicles modeling scent-releasing fabric softeners, Journal of Oleo Science, 2018, 67, 177-186.
68. K. Aburai, T. Ogura, R. Hyodo, H. Sakai, M. Abe, O. Glatter, Location of cholesterol in liposomes by using small-angle X-ray scattering (SAXS) data and the generalized indirect Fourier transformation (GIFT) method, Journal of Oleo Science, 2013, 62, 913-918.
69. J. Bouwstra, G. Gooris, W. Bras, H. Talsma, Small angle X-ray scattering: possibilities and limitations in characterization of vesicles, Chemistry and Physics of Lipids, 1993, 64, 83-98.
70. P.J. Quinn, H. Takahashi, I. Hatta, Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol, Biophysical Journal, 1995, 68, 1374-1382.
71. C.M. Wu, W. Liou, H.L. Chen, T.L. Lin, U.S. Jeng, Self-assembled structure of the binary complex of DNA with cationic lipid, Macromolecules, 2004, 37, 4974-4980.
72. P.W. Sanderson, L.J. Lis, P.J. Quinn, W.P. Williams, The Hofmeister effect in relation to membrane lipid phase stability, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1991, 1067, 43-50.
73. X. Wang, P.J. Quinn, Cubic phase is induced by cholesterol in the dispersion of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002, 1564, 66-72.
74. A.M. Smondyrev, M.L. Berkowitz, Effects of oxygenated sterol on phospholipid bilayer properties: a molecular dynamics simulation, Chemistry and Physics of Lipids, 2001, 112, 31-39.
75. S. Bhattacharya, S. Haldar, The effects of cholesterol inclusion on the vesicular membranes of cationic lipids, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1996, 1283, 21-30.
76. T.A. Daly, M. Wang, S.L. Regen, The origin of cholesterol’s condensing effect, Langmuir, 2011, 27, 2159-2161.
77. M.R. Krause, S. Turkyilmaz, S.L. Regen, Surface occupancy plays a major role in cholesterol’s condensing effect, Langmuir, 2013, 29, 10303-10306.
78. R. Alenaizi, S. Radiman, I.A. Rahman, F. Mohamed, Zwitterionic betaine transition from micelles to vesicles induced by cholesterol, Journal of Molecular Liquids, 2016, 223, 1226-1233.
79. T.T. Bui, K. Suga, H. Umakoshi, Roles of sterol derivatives in regulating the properties of phospholipid bilayer systems, Langmuir, 2016, 32, 6176-6184.
80. E. El Khoury, D. Patra, Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes, Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 49-54.
81. F. Severcan, Ü. Baykal, Ş. Süzer, FTIR studies of vitamin E-cholesterol-DPPC membrane interactions in CH2 region, Fresenius' Journal of Analytical Chemistry, 1996, 355, 415-417.
82. I. Fournier, J. Barwicz, M. Auger, P. Tancrède, The chain conformational order of ergosterol-or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: a FTIR study, Chemistry and Physics of Lipids, 2008, 151, 41-50.
83. A.M. Smondyrev, M.L. Berkowitz, Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol, Biophysical Journal, 2001, 80, 1649-1658.
84. M.L. Berkowitz, Detailed molecular dynamics simulations of model biological membranes containing cholesterol, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788, 86-96.
85. J. Yang, J. Martí, C. Calero, Pair interactions among ternary DPPC/POPC/cholesterol mixtures in liquid-ordered and liquid-disordered phases, Soft Matter, 2016, 12, 4557-4561.
86. W.H. Lee, Y.L. Tang, T.C. Chiu, Y.M. Yang, Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers, Journal of Chemical & Engineering Data, 2015, 60, 1119-1125.
87. W.H. Chang, Y.T. Chuang, C.Y. Yu, C.H. Chang, Y.M. Yang, Effects of sterol-like additives on phase transition behavior of ion-pair amphiphile bilayers, Journal of Oleo Science, 2017, 66, 1229-1238.
88. F. de Meyer, B. Smit, Effect of cholesterol on the structure of a phospholipid bilayer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (10), 3654-3662.
89. J. Michl, E.W. Thulstrup, Spectroscopy with polarized light: solute alignment by photoselection, in liquid crystals, polymers, and membranes. Vancouver Coastal Health : 1986
90. B. Valeur, M.N. Berberan-Santos, Molecular fluorescence: principles and applications, John Wiley & Sons: 2012.
91. M. Vincent, B. De Foresta, J. Gallay, A. Alfsen, Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents, Biochemistry, 1982, 21, 708-716.
92. J.R. Lakowicz, B.R. Masters, Principles of fluorescence spectroscopy, Journal of Biomedical Optics, 2008, 13, 029901.
93. T.T. Bui, K. Suga, H. Umakoshi, Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems, Langmuir, 2016, 32, 6176−6184.
94. FL WinLab v4.00 for LS-45/5550B-螢光光譜儀操作手冊
95. Fluorescence polarization-technical resource guide, 4th Ed. Invitrogen 2006.
96. R. Dimova, Recent developments in the field of bending rigidity measurements on membranes, Advances in Colloid and Interface Science, 2014, 208, 225–234.